
IBM Informix ESQL/C
Programmer’s Manual
Version 5.2
November 2002
Part No. 000-9144

ii IBM Informix ESQL/C
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”
 Programmer’s Manual

Preface

The INFORMIX-ESQL/C Programmer’s Manual is a complete guide to the fea-
tures that make up the Informix implementation of embedded SQL (Struc-
tured Query Language) for C. It assumes that you know C programming and
are familiar with the structure of relational databases. In addition, a knowl-
edge of SQL would be useful. Informix SQL is described in detail in The Infor-
mix Guide to SQL: Tutorial and The Informix Guide to SQL: Reference.

The INFORMIX-ESQL/C Programmer’s Manual explains how to use INFOR-
MIX-ESQL/C to access a database server and describes the special features that
the product offers. It is designed specifically as a programmer’s manual and
progresses from general topics to more advanced programming techniques
and examples.

Summary of Chapters
The INFORMIX-ESQL/C Programmer’s Manual includes the following
chapters:

• This Preface provides general information about the manual and lists
additional reference materials that will help you understand ESQL/C
concepts.

• The Introduction tells how ESQL/C fits into the Informix family of prod-
ucts and manuals, explains how to use the manual, introduces the
demonstration database from which the product examples are drawn,
describes the Informix Messages and Corrections product, and lists the
new features for Version 5.0 of Informix server products.

• Chapter 1, “Programming with INFORMIX-ESQL/C,” provides the basic
information that you need to program in ESQL/C. This includes how to use
the libraries provided with the product, how to embed SQL statements in

your programs, how to use host variables, and how to implement simple
error checking.

• Chapter 2, “INFORMIX-ESQL/C Data Types,” describes the various data
types that you can use in an SQL database, their corresponding host vari-
ables, and the conversion routines that you use with them.

• Chapter 3, “Working with Character and String Data Types,” describes
the details of using the available character and string data types, includ-
ing the VARCHAR data type. It also lists the routines that you can use with
string and character data types.

• Chapter 4, “Working with the DECIMAL Data Type,” describes how to use
the DECIMAL data type and the routines that are available with DECIMAL
values.

• Chapter 5, “Working with Time Data Types,” contains detailed descrip-
tions of the library functions that permit the manipulation of DATE,
DATETIME, and INTERVAL data types.

• Chapter 6, “Working with Binary Large Objects,” describes binary large
objects (blobs) and their data types (TEXT and BYTE). It also discusses the
routines provided for creating and manipulating blobs.

• Chapter 7, “Error Handling,” explains how to use error checking effec-
tively in your INFORMIX-ESQL/C programs.

• Chapter 8, “Working with the Database Server,” describes miscellaneous
run-time routines that you can use to interact with the database server
and the operating system.

• Chapter 9, “Dynamic Management in INFORMIX-ESQL/C,” describes
when and how to use dynamic memory management in ESQL/C. This
includes how to write code using SQL statements that either do and do
not receive values at run time and how to use the sqlda structure in con-
junction with statements that do not receive values at run time.

• Chapter 10, “List of INFORMIX-ESQL/C Routines,” lists the ESQL/C
library routines described throughout the manual. The list includes page
references and descriptions for all routines.
iv Preface

Related Reading
If you have had no prior experience with database management, you may
want to refer to an introductory text like C. J. Date’s Database: A Primer
(Addison-Wesley Publishing, 1983). If you want more technical information
on database management, consider consulting the following texts, also by
C. J. Date:

• An Introduction to Database Systems, Volume I (Addison-Wesley Publishing,
1990)

• An Introduction to Database Systems, Volume II (Addison-Wesley
Publishing, 1983)

This guide assumes you are familiar with your computer operating system. If
you have limited UNIX system experience, you may want to look at your
operating system manual or a good introductory text before starting to learn
about INFORMIX-ESQL/C. You might also want to keep your compiler docu-
mentation at hand.

Some suggested texts about UNIX systems follow:

• A Practical Guide to the UNIX System by M. Sobell (Benjamin/Cummings
Publishing, 1984)

• A Practical Guide to UNIX System V by M. Sobell (Benjamin/Cummings
Publishing, 1985)

• UNIX for People by Birns, Brown, and Muster (Prentice-Hall, 1985)
Preface v

vi Preface

Table of
Contents

Table of Contents

Introduction
INFORMIX-ESQL/C and Other Informix Products 3
Other Useful Documentation 4
How to Use This Manual 4

Typographical Conventions 5
Command-Line Conventions 5

Useful On-Line Files 7
ASCII and PostScript Error Message Files 8

Using the ASCII Error Message File 8
Using the PostScript Error Message Files 10

The Demonstration Database 11
Creating the Demonstration Database on

INFORMIX-OnLine 12
Creating the Demonstration Database on

INFORMIX-SE 12
Compliance with Industry Standards 13
New Features in INFORMIX-ESQL/C, Version 5.0 14

Dynamic SQL in X/Open Mode 14
New Routines 15
New Compile Options 15
New Compile Options for Backward

Compatibility 15
Other New Features 16

New Features in Informix Server Products, Version 5.0 16

Chapter 1 Programming with INFORMIX-ESQL/C
Chapter Overview 1-3
What Is INFORMIX-ESQL/C? 1-3
Embedding SQL Statements in C Routines 1-4

Case Sensitivity in ESQL/C Files 1-4
Inserting Comments 1-5

Header Files 1-5
ESQL/C Preprocessor Support 1-7

Include Files 1-7
The $define and $undef Statements 1-8
The ifdef, ifndef, else, elif, and endif Statements 1-9

Using Host Variables in SQL Statements 1-9
Declaring Host Variables 1-10
Scope of Host Variables 1-11
Types of Host Variables 1-12
Arrays of Host Variables 1-14
Structures as Host Variables 1-14
typedef Expressions as Host Variables 1-15
Null Values in Host Variables 1-15
Character Pointers as Host Variables 1-16
Host Variables as Function Parameters 1-16

Indicator Variables 1-17
Declaring Indicator Variables 1-17
Values Returned in Indicator Variables 1-18
Using Indicator Variables 1-18

Compiling INFORMIX-ESQL/C Programs 1-20
Syntax of the esql Command 1-21
Preprocessing Without Compiling or Linking 1-22
Using the Preprocessing Options 1-23
Preprocessing, Compiling, and Linking with the esql Command 1-26

A Sample INFORMIX-ESQL/C Program 1-28
Guide to demo1.ec 1-28

Chapter 2 INFORMIX-ESQL/C Data Types
Chapter Overview 2-3
Choosing Data Types for Host Variables 2-3

Defined Integers for Data Types 2-5
Character Data Type Choices 2-5

Data Conversion 2-6
When Conversion Occurs 2-6
What Happens in a Conversion 2-7
Numbers to Strings 2-8
Numbers to Numbers 2-8
Operations on Numeric Values 2-8
Data Conversion When Fetching Rows 2-9
Converting Between DATETIME and DATE Data Types 2-9
Converting Between VARCHAR and Character Data Types 2-10
viii Table of Contents

Data Type Function Descriptions 2-12
RISNULL 2-13
RSETNULL 2-16
RTYPALIGN 2-19
RTYPMSIZE 2-22
RTYPNAME 2-25
RTYPWIDTH 2-28

Numeric-Formatting Routines 2-31
Formatting Numeric Strings 2-31
Example Format String 2-33
Example Format String 2-34
Example Format String 2-35
Example Format String 2-36
RFMTDOUBLE 2-37
RFMTLONG 2-40

Chapter 3 Working with Character and String Data Types
Chapter Overview 3-3
Character and String Functions 3-4

BYCMPR 3-5
BYCOPY 3-7
BYFILL 3-9
BYLENG 3-11
LDCHAR 3-13
RDOWNSHIFT 3-15
RSTOD 3-16
RSTOI 3-18
RSTOL 3-20
RUPSHIFT 3-22
STCAT 3-23
STCHAR 3-25
STCMPR 3-27
STCOPY 3-29
STLENG 3-30

Programming with a VARCHAR Data Type 3-32
Declaring a Host Variable for a VARCHAR Data Type 3-32
VARCHAR Macros 3-33
Table of Contents ix

Chapter 4 Working with the DECIMAL Data Type
Chapter Overview 4-3
The DECIMAL Data Type 4-3

Decimal Type Functions 4-5
DECCVASC 4-6
DECTOASC 4-9
DECCVINT 4-12
DECTOINT 4-14
DECCVLONG 4-16
DECTOLONG 4-18
DECCVDBL 4-20
DECTODBL 4-22
DECADD, DECSUB, DECMUL, and DECDIV 4-25
DECCMP 4-31
DECCOPY 4-33
DECECVT and DECFCVT 4-35
DECROUND 4-41
DECTRUNC 4-43
RFMTDEC 4-45

Chapter 5 Working with Time Data Types
Chapter Overview 5-3
The DATE Data Type 5-3
DATE Functions 5-4

RDATESTR 5-5
RDAYOFWEEK 5-7
RDEFMTDATE 5-9
RFMTDATE 5-12
RJULMDY 5-15
RLEAPYEAR 5-17
RMDYJUL 5-19
RSTRDATE 5-21
RTODAY 5-23

DATETIME and INTERVAL Data Types 5-24
DATETIME and INTERVAL Columns 5-24
Declaring DATETIME and INTERVAL Host Variables 5-25
Fetching DATETIME and INTERVAL Values 5-26
Storing DATETIME and INTERVAL Values 5-27

Converting Between DATETIME and DATE Data Types 5-27
DATETIME and INTERVAL Data Type Functions 5-28

DTCURRENT 5-30
DTCVASC 5-32
DTCVFMTASC 5-35
x Table of Contents

DTEXTEND 5-37
DTTOASC 5-40
DTTOFMTASC 5-42
INCVASC 5-44
INCVFMTASC 5-46
INTOASC 5-48
INTOFMTASC 5-50

Chapter 6 Working with Binary Large Objects
Chapter Overview 6-3
Programming with Blobs 6-3

Fields Common to All Data Locations 6-5
Locating Blobs in Memory 6-6
Reading a Blob into Memory 6-7
Writing a Blob from Memory 6-9
Locating Blobs in Open Files 6-10
Locating Blobs in Named Files 6-14
User-Programmed Location 6-17
LOC_DESCRIPTOR 6-19

Guide to dispcat_pic 6-22
Before Using dispcat_pic 6-22
Using the Conditional Display Logic 6-23
Loading the cat_picture Column 6-23
Using blobload 6-24
The dispcat_pic Program 6-26

Chapter 7 Error Handling
Chapter Overview 7-3

The Role of the sqlca Structure 7-3
General Error Handling 7-5

Error Status < 0 7-5
Error Status = 0 7-5
Error Status > 0 and < 100 7-5
Error Status = SQLNOTFOUND or 100 7-6
Using the SQLCODE Variable 7-7
Checking for an Error Using In-Line Code 7-8
Automatically Checking for Errors with the WHENEVER Statement 7-9
Checking for Warnings 7-10
Errors After a PREPARE Statement 7-12
Errors After an EXECUTE Statement 7-12
RGETMSG 7-13

A Program That Uses Full Error Checking 7-15
Table of Contents xi

Chapter 8 Working with the Database Server
Chapter Overview 8-3
Database Server Control Functions 8-3

SQLBREAK 8-4
SQLDETACH 8-5
SQLEXIT 8-6
SQLSTART 8-7

Chapter 9 Dynamic Management in INFORMIX-ESQL/C
Chapter Overview 9-3
Dynamic SQL Statements and Management Techniques 9-4

Types of Dynamic Management Situations 9-4
The System Descriptor Area 9-5
The sqlda Structure 9-6
Constants in sqltypes.h 9-7
Constants and sqlstype.h 9-9

Non-SELECT Statements That Do Not Receive Values at Run Time 9-12
Using EXECUTE IMMEDIATE 9-12

SELECT Statements in Which Select-List Values Are Determined
at Run Time 9-13

Using Descriptors 9-13
Using an sqlda Structure 9-17

SELECT Statements That Receive WHERE-Clause Values at Run Time 9-21
Using Host Variables 9-21
Using a System Descriptor Area 9-24
Using an sqlda Structure 9-29

Non-SELECT Statements That Receive Values at Run Time 9-30
Using Host Variables 9-31
Using a System Descriptor Area 9-31
Using an sqlda Structure 9-33

Chapter 10 List of INFORMIX-ESQL/C Routines
List of Routines 10-3

Appendix A Notices
xii Table of Contents

Introduction
Introduction

INFORMIX-ESQL/C and Other Informix Products 3

Other Useful Documentation 4

How to Use This Manual 4
Typographical Conventions 5
Command-Line Conventions 5

Useful On-Line Files 7

ASCII and PostScript Error Message Files 8
Using the ASCII Error Message File 8

The finderr Script 9
The rofferr Script 9

Using the PostScript Error Message Files 10

The Demonstration Database 11
Creating the Demonstration Database on

INFORMIX-OnLine 12
Creating the Demonstration Database on

INFORMIX-SE 12

Compliance with Industry Standards 13

New Features in INFORMIX-ESQL/C, Version 5.0 14
Dynamic SQL in X/Open Mode 14
New Routines 15
New Compile Options 15
New Compile Options for Backward

Compatibility 15
Other New Features 16

New Features in Informix Server Products, Version 5.0 16

2 Introduction

INFORMIX-ESQL/C is an application development tool that is designed for
the C programmer who wants to create custom C applications with database
management capabilities. INFORMIX-ESQL/C allows you to use a third-
generation language with which you are familiar and takes advantage of the
Informix enhanced Structured Query Language (SQL).

You use the libraries, header files, and preprocessors that are provided with
INFORMIX-ESQL/C to embed database management instructions, in the form
of concise SQL statements, directly into a C program. This product also pro-
vides you with an extensive library of routines to manipulate and use SQL
data types. It also provides routines that you can use to interpret messages
sent by the operating system. The preprocessor allows you to preprocess
embedded C code directly into C executable code, or you can use it to create
C source code for your inspection or manipulation.

INFORMIX-ESQL/C and Other Informix Products
INFORMIX-ESQL/C is one of many application development tools and CASE
tools produced by Informix Software, Inc. Other tools currently available
include INFORMIX-4GL and the Interactive Debugger and other Informix
embedded-language products, such as INFORMIX-ESQL/COBOL and INFOR-
MIX-ESQL/FORTRAN.

INFORMIX-ESQL/C works with a database server, either INFORMIX-OnLine
or INFORMIX-SE. If you are developing or running applications on a net-
work, you are using an Informix client/server product such as INFOR-
MIX-NET or INFORMIX-STAR. INFORMIX-NET is the communication facility
for multiple INFORMIX-SE database servers. INFORMIX-STAR allows distrib-
uted database access to multiple INFORMIX-OnLine database servers.
Introduction 3

Other Useful Documentation
Other Useful Documentation
You may want to refer to a number of related Informix product documents
that complement the INFORMIX-ESQL/C Programmer’s Manual.

• If you have never used SQL (Structured Query Language) or an Informix
application development tool, read The Informix Guide to SQL: Tutorial to
learn basic database design and implementation concepts.

• A companion volume to the Tutorial, The Informix Guide to SQL: Reference,
provides full information on the structure and contents of the demonstra-
tion database that is provided with INFORMIX-ESQL/C. It includes details
of the Informix system catalog tables, describes Informix and common
UNIX environment variables that should be set, and defines column data
types supported by Informix products. Further, it provides a detailed
description of all the SQL statements supported by Informix products. It
also contains a glossary of useful terms.

• The SQL Quick Syntax Guide contains syntax diagrams for all of the state-
ments and segments described in The Informix Guide to SQL: Reference.

• You, or whoever installs INFORMIX-ESQL/C, should refer to the UNIX
Products Installation Guide for your particular version to ensure that
INFORMIX-ESQL/C is properly set up before you begin to work with it.

• If you are using INFORMIX-ESQL/C across a network, you may also want
to refer to the INFORMIX-NET/INFORMIX-STAR Installation and Config-
uration Guide.

• Depending on the database server you are using, you or your system
administrator need either the INFORMIX-OnLine Administrator’s Guide or
the INFORMIX-SE Administrator’s Guide.

• When errors occur, you can look them up, by number, and find their cause
and solution in the Informix Error Messages manual. If you prefer, you can
look up the error messages in the on-line message file described in the
section “ASCII and PostScript Error Message Files” later in this
Introduction.

How to Use This Manual
This manual assumes that you are using INFORMIX-OnLine as your database
server. Features and behavior specific to INFORMIX-SE are noted throughout
the manual.
4 Introduction

Typographical Conventions
Typographical Conventions
The INFORMIX-ESQL/C Programmer’s Manual uses a standard set of conven-
tions to introduce new terms, illustrate screen displays, describe command
syntax, and so forth. The following typographical conventions are used
throughout the manual:

italics When new terms are introduced, they are printed in italics.

boldface Database names, table names, column names, filenames,
utilities, and other similar terms are printed in boldface.

computer Information that INFORMIX-ESQL/C displays and informa-
tion that you enter are printed in a computer typeface.

KEYWORD All keywords appear in uppercase letters.

Additionally, when you are instructed to “enter” or “execute” text, immedi-
ately press RETURN after the entry. When you are instructed to “type” the
text, no RETURN is required.

Command-Line Conventions
INFORMIX-ESQL/C supports a variety of command-line options. These are
commands that you enter at the operating system prompt to perform certain
functions in INFORMIX-ESQL/C. Each valid command-line option is illus-
trated in a diagram in Chapter 1 of this manual.

This section defines and illustrates the format of the commands available in
INFORMIX-ESQL/C and other Informix products. These commands have
their own conventions, which may include alternative forms of a command,
required and optional parts of the command, and so forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Along a command-line path, you may encounter the following elements:

command This required element is usually the product name or other
short word used to invoke the product or call the compiler
or preprocessor script for a compiled Informix product. It
may appear alone or precede one or more options. You must
Introduction 5

Command-Line Conventions
spell a command exactly as shown and must use lowercase
letters.

variable A word in italics represents a value that you must supply,
such as a database, file, or program name. The nature of the
value is explained immediately following the diagram.

-flag A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the pre-
ceding hyphen.

.ext A filename extension, such as .sql or .cob, may follow a vari-
able representing a filename. Type this extension exactly as
shown, immediately after the name of the file and a period.
The extension may be optional in certain products.

(.,;+*-/) Punctuation and mathematical notations are literal symbols
that you must enter exactly as shown.

" " Double quotes are literal symbols that you must enter as
shown. You can replace a pair of double quotes with a pair
of single quotes, if you prefer. You cannot mix double and
single quotes.

A reference in a box represents a subdiagram on the same
page or another page. Imagine that the subdiagram is
spliced into the main diagram at this point.

A shaded option is the default. Even if you do not explicitly
type the option, it will be in effect unless you choose another
option.

A branch below the main line indicates an optional path.

The vertical line is a terminator and indicates that the state-
ment is complete.

Commands enclosed in a pair of arrows indicate that this is
a subdiagram.

A gate () in an option indicates that you can only use that
option once, even though it is within a larger loop.

Privileges
 p. 6-17

ALL

-

-s

-t1

1

1

6 Introduction

Useful On-Line Files
The following diagram shows the elements of a fictional command used to
echo file input to the screen:

Figure 1 Elements of a command-line diagram

To construct a similar command, start at the top left with the command
dbout. Then follow the diagram to the right, including the elements that you
want. This diagram conveys the following information:

1. You must type the word dbout.

2. You can echo the SQL statements in a command file to the screen by typ-
ing the flag -e before the database name.

3. You must supply a database name or use a hyphen (-) to indicate that a
database name is specified in the command file that you want to run.

4. You must specify the filename of a command file whose SQL statements
you want to echo to the screen.

On some command-line diagrams, you can take the direct route to the termi-
nator, or you can take an optional path indicated by a branch below the main
line.

Once you are back at the main diagram, you come to the terminator. Your
dbout command is complete. Press RETURN to execute the command.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release directory, may supplement the information in
the INFORMIX-ESQL/C Programmer’s Manual:

Documentation describe features not covered in the manual or which have
Notes been modified since publication. The file containing the Doc-

umentation Notes for this product is called ESQLCDOC_5.0.

Release Notes describe feature differences from earlier versions of Informix
products and how these differences may affect current prod-
ucts. The file containing the Release Notes for INFOR-
MIX-ESQL/C and other products is called ENGREL_5.0.

-

databasedbout filename-e
Introduction 7

ASCII and PostScript Error Message Files
Machine Notes describe any special actions required to configure and use
Informix products on your machine. The file containing the
Machine Notes for INFORMIX-ESQL/C is called ESQLC_5.0.

Please examine these files because they contain vital information about appli-
cation and performance issues.

This manual makes extensive references to sample programs. These pro-
grams are provided on-line as part of the product.

ASCII and PostScript Error Message Files
Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To access the error messages in
the ASCII file, Informix provides scripts that let you display error messages
on the terminal or print formatted error messages.

The optional Informix Messages and Corrections product provides Post-
Script files that contain the error messages and their corrective actions. If you
have installed this product, you can print the PostScript files on a PostScript
printer.

Using the ASCII Error Message File
You can use the file that contains the ASCII text version of the error messages
and their corrective actions in two ways:

• Use the finderr script to display one or more error messages on the
terminal screen.

• Use the rofferr script to print one error message or a range of error
messages.

The scripts are in the $INFORMIXDIR/bin directory. The ASCII file has the
following path:

$INFORMIXDIR/msg/errmsg.txt

The error message numbers range from -1 to -33000. When you specify these
numbers for the finderr or rofferr scripts, you can omit the minus sign. A few
messages have positive numbers. In the unlikely event that you want to dis-
play them, you must precede the message number with a + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.
8 Introduction

Using the ASCII Error Message File
The finderr Script

Use the finderr script to display one or more error messages, and their cor-
rective actions, on the terminal screen. The finderr script has the following
syntax:

msg_num is the number of the error message to display.

You can specify any number of error messages per finderr command. The
finderr command copies all the specified messages, and their corrective
actions, to standard output.

For example, to display the -359 error message, you can enter the following
command:

finderr -359

The following example demonstrates how to specify a list of error messages.
This example also pipes the output to the UNIX more command to control the
display. You also can redirect the output to another file so that you can save
or print the error messages:

finderr 233 107 113 134 143 144 154 | more

The rofferr Script

Use the rofferr script to format one error message, or a range of error mes-
sages, for printing. By default, rofferr displays output on the screen. You
need to send the output to nroff to interpret the formatting commands and
then to a printer, or to a file where the nroff output is stored until you are
ready to print. You can then print the file. For information on using nroff and
on printing files, see your UNIX documentation.

finderr

-

+

msg_num
Introduction 9

Using the PostScript Error Message Files
The rofferr script has the following syntax:

start_msg is the number of the first error message to format. This error
message number is required.

end_msg is the number of the last error message to format. This error
message number is optional. If you omit end_msg, only
start_msg is formatted.

The following example formats error message -359. It pipes the formatted
error message into nroff and sends the output of nroff to the default printer:

rofferr 359 | nroff -man | lpr

The following example formats and then prints all the error messages
between -1300 and -4999:

rofferr -1300 -4999 | nroff -man | lpr

Using the PostScript Error Message Files
Use the Informix Messages and Corrections product to print the error mes-
sages, and their corrective actions, on a PostScript printer. The PostScript
error messages are distributed in a number of files of the format errmsg1.ps,
errmsg2.ps, and so on. These files are located in the $INFORMIXDIR/msg
directory. Each file contains approximately 50 printed pages of error
messages.

-

+

start_msgrofferr

end_msg

+

-

10 Introduction

The Demonstration Database
The Demonstration Database
Your Informix software includes a demonstration database called stores5
that contains information about a fictitious wholesale sporting-goods distrib-
utor. The source files that make up a demonstration application are included
as well.

Most of the examples in this manual are based on the stores5 demonstration
database. The stores5 database is described in detail and its contents are
listed in Chapter 1 of The Informix Guide to SQL: Reference.

The script you use to install the demonstration database is called
esqldemo5 and is located in the $INFORMIXDIR/bin directory. The database
name that you supply is the name given to the demonstration database. If
you do not supply a database name, the name defaults to stores5. Follow
these rules for naming your database:

• Names for databases can be up to 10 characters long.

• The first character of a name must be a letter.

• You can use letters, characters, and underscores (_) for the rest of the
name.

• INFORMIX-ESQL/C makes no distinction between uppercase and lower-
case letters.

• The database name should be unique.

When you run esqldemo5, you are, as the creator of the database, the owner
and Database Administrator (DBA) of that database.

If you installed your Informix database server product according to the
installation instructions, the files that make up the demonstration database
are protected so that you cannot make any changes to the original database.

You can run the esqldemo5 script again whenever you want to work with a
fresh demonstration database. The script prompts you when the creation of
the database is complete, and asks if you would like to copy the demonstra-
tion programs to the current directory. Answer “N” to the prompt if you have
made changes to the demonstration programs and do not want them
replaced with the original versions. Answer “Y” to the prompt if you want to
copy over the demonstration programs.
Introduction 11

Creating the Demonstration Database on INFORMIX-OnLine
Creating the Demonstration Database on
INFORMIX-OnLine

Use the following steps to create and populate the demonstration database in
the INFORMIX-OnLine environment:

1. Set the INFORMIXDIR environment variable so that it contains the name
of the directory in which your Informix products are installed. Set
SQLEXEC to $INFORMIXDIR/lib/sqlturbo. (For a full description of envi-
ronment variables, see Chapter 4 of The Informix Guide to SQL: Reference.)

2. Create a new directory for the SQL demonstration programs. Create the
directory by entering

mkdir dirname

3. Make the new directory the current directory by entering

cd dirname

4. Create the demonstration database and copy over the demonstration pro-
grams by entering

esqldemo5 dbname

The data for the database is put into the root dbspace.

To give someone else the SQL privileges to access the data, use the GRANT
and REVOKE statements. The GRANT and REVOKE statements are described
in Chapter 7 of The Informix Guide to SQL: Reference.

To use the demonstration programs that have been copied to your directory,
you must have UNIX read and execute permissions for each directory in the
pathname of the directory from which you ran the esqldemo5 script. To give
someone else the permissions to access the demonstration programs in your
directory, use the UNIX chmod command.

Creating the Demonstration Database on INFORMIX-SE
Use the following steps to create and populate the demonstration database in
the INFORMIX-SE environment:

1. Set the INFORMIXDIR environment variable so that it contains the name
of the directory in which your Informix products are installed. Set
12 Introduction

Compliance with Industry Standards
SQLEXEC to $INFORMIXDIR/lib/sqlexec. (For a full description of envi-
ronment variables, see Chapter 4 of The Informix Guide to SQL: Reference.)

2. Create a new directory for the demonstration database. This directory
will contain the demonstration programs included with the demonstra-
tion database. Create the directory by entering

mkdir dirname

3. Make the new directory the current directory by entering

cd dirname

4. Create the demonstration database and copy over the demonstration pro-
grams by entering

esqldemo5 dbname

When you run the esqldemo5 script, it creates a subdirectory called
dbname.dbs in your current directory and places the database files associated
with stores5 there. You will see both data and index files in the dbname.dbs
directory.

To use the database and the demonstration programs that have been copied
to your directory, you must have UNIX read and execute permissions for each
directory in the pathname of the directory from which you ran the
esqldemo5 script. To give someone else the permissions to access the demon-
stration programs in your directory, use the UNIX chmod command. Check
with your system administrator for more information about operating sys-
tem file and directory permissions. UNIX permissions are discussed in the
INFORMIX-SE Administrator’s Guide.

To give someone else access to the database that you have created, grant them
the appropriate privileges using the SQL GRANT statement. To remove privi-
leges, use the REVOKE statement. The GRANT and REVOKE statements are
described in Chapter 7 of The Informix Guide to SQL: Reference.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are compliant with
ANSI Level 2 (published as ANSI X3.135-1989) on the INFORMIX-OnLine
database server. They are compliant with ANSI Level 2 on the INFORMIX-SE
database server with the following exceptions:

• Effective checking of constraints

• Serializable transactions
Introduction 13

New Features in INFORMIX-ESQL/C, Version 5.0
INFORMIX-TP/XA conforms to the X/Open Preliminary Specification (April
1990), Distributed Transaction Processing: The XA Interface.

New Features in INFORMIX-ESQL/C, Version 5.0
The following features have been added or modified for Version 5.0 of
INFORMIX-ESQL/C:

Dynamic SQL in X/Open Mode
INFORMIX-ESQL/C has been modified to support Dynamic SQL in X/Open
mode. Prior to this version, if you used dynamic SQL, you used the DESCRIBE
statement to set an sqlda-ptr to an sqlda structure and describe the data
retrieved when the described statement was executed. For Dynamic SQL in
X/Open mode, you can allocate a system descriptor area and specify its size.
You can retrieve the information stored in these system descriptor areas by
using new SQL statements.

The modifications include changes to the following SQL statements:

• DESCRIBE

• EXECUTE

• FETCH

• OPEN

• PUT

In addition to the modifications to existing statements, four new statements
have been added to support Dynamic SQL in X/Open mode. These state-
ments are as follows:

• ALLOCATE DESCRIPTOR

• DEALLOCATE DESCRIPTOR

• GET DESCRIPTOR

• SET DESCRIPTOR

How and when to use Dynamic SQL in X/Open mode is discussed in Chapter
9 of this manual.
14 Introduction

New Routines
New Routines
Four new routines have been added to INFORMIX-ESQL/C to support
DATETIME and INTERVAL data types. See Chapter 5 of this manual for infor-
mation on these new routines. The names of the new routines are as follows:

• dtcvfmtasc() converts an ASCII string to a DATETIME value using a spec-
ified format string.

• dttofmtasc() converts a DATETIME value to an ASCII string value using a
specified format string.

• incvfmtasc() converts an ASCII string to an INTERVAL value using a spec-
ified format string.

• intofmtasc() converts an INTERVAL value to an ASCII string value using a
specified format string.

New Compile Options
New options have been added to the esql command. The new options and
the full syntax of esql are discussed in Chapter 1.

• A new preprocessor option, -log filename, lets you send error messages
and warnings to a specified file instead of to standard output.

• A new compiler flag, -xopen, can be passed to the compiler script to
invoke the use of the X/Open data type codes.

New Compile Options for Backward Compatibility
New options have been added to the esql command for backward compati-
bility with applications created in previous versions of INFORMIX-ESQL/C.
Do not use these options when compiling new applications. The new options
and the full syntax of esql are discussed in Chapter 1.

• Cursor names and statement identifier names are global in scope. A new
compiler flag, -local, lets you keep these cursors and statement identifiers
local to the file in which they are defined.

• Statement ids (created with a PREPARE statement) and cursor names (cre-
ated with a DECLARE statement) are not case sensitive, by default. If you
want the INFORMIX-ESQL/C preprocessor to be case sensitive with
respect to cursor names and statement ids, you can use the -cs option to
the esql command when you preprocess your program.

In Version 4.1 of INFORMIX-ESQL/C, static cursor names and static state-
ment ids were case sensitive by default. If you used uppercase and low-
Introduction 15

Other New Features
ercase letters to differentiate cursor names or statement ids, you must use
the -cs option or rewrite your programs.

Other New Features
• You can declare multiple cursors using a single statement identifier. This

feature is described in Chapter 9 of this manual and in the discussion of
the DECLARE statement in Chapter 7 of The Informix Guide to SQL:
Reference.

• A new preprocessor instruction, ELIF, provides an alternative to the
macro statement defined by an IFDEF condition. This instruction is dis-
cussed in Chapter 1.

New Features in Informix Server Products, Version 5.0
This section highlights the major new features implemented in Version 5.0 of
Informix server products:

• Referential and Entity Integrity

New data integrity constraints allow you to specify a column or columns
as representing a primary or foreign key of a table upon creation, and to
establish dependencies between tables. Once specified, a parent-child
relationship between two tables is enforced by the database server. Other
constraints allow you to specify a default value for a column, or to specify
a condition for a column that an inserted value must meet.

• Stored Procedures

A stored procedure is a function written by a user using a combination of
SQL statements and Stored Procedure Language (SPL). Once created, a
procedure is stored as an object in the database in a compiled, optimized
form, and is available to other users with the appropriate privileges. In a
client/server environment, the use of stored procedures can significantly
reduce network traffic.

• Dynamic SQL

Support is provided for the X/Open implementation of dynamic SQL
using a system descriptor area. This support involves the new SQL state-
ments ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, GET
DESCRIPTOR, and SET DESCRIPTOR, as well as changes in the syntax of
existing dynamic management statements.
16 Introduction

New Features in Informix Server Products, Version 5.0
• Optimizer Enhancement

You can use the new SET OPTIMIZATION statement to instruct the data-
base server to select a high or low level of query optimization. The default
level of HIGH causes the database server to examine and select the best of
all possible optimization strategies. Since this level of optimization may
result in a longer-than-desired optimization time for some queries, you
have the option of setting an optimization level of LOW.

• Relay Module (INFORMIX-NET only)

The new Relay Module component of INFORMIX-NET resides on
the client machine in a distributed data processing environment and
relays messages between the application development tool and an INFOR-
MIX-OnLine or INFORMIX-SE database server through a network inter-
face. The Relay Module allows Version 5.0 application development tools
to connect to a remote database server without the need to run an Infor-
mix database server process on the client.

• Fast Indexing (INFORMIX-OnLine only)

The Version 5.0 INFORMIX-OnLine database server uses a new method of
creating large indexes when you execute the CREATE INDEX statement. In
this method, index entries are sorted prior to their insertion into the B+
tree structure, resulting in faster index creation.

• Two-Phase Commit (INFORMIX-STAR only)

The new two-phase commit protocol allows you to manipulate data in
multiple databases on multiple OnLine database servers within a single
transaction. It ensures that transactions that span more than one OnLine
database server are committed on an all-or-nothing basis.

• Support for Optical Media (INFORMIX-OnLine/Optical only)

A new product, INFORMIX-OnLine/Optical , allows you to store and
retrieve blob data using an optical storage subsystem. The new SQL state-
ments and functions that support optical storage are described in the
INFORMIX-OnLine/Optical User Manual.

• Support for Transaction Processing in the XA Environment
(INFORMIX-TP/XA only)

A new product, INFORMIX-TP/XA, allows you to use the INFOR-
MIX-OnLine database server as a Resource Manager in conformance with
the X/Open Preliminary Specification (April 1990), Distributed Transaction
Processing: The XA Interface. The INFORMIX-TP/XA User Manual describes
the changes in the behavior of existing SQL statements that manage trans-
actions in an X/Open environment.
Introduction 17

New Features in Informix Server Products, Version 5.0
18 Introduction

Chapter
1

Programming with
INFORMIX-
ESQL/C
Chapter Overview 3

What Is INFORMIX-ESQL/C? 3

Embedding SQL Statements in C Routines 4
Case Sensitivity in ESQL/C Files 4
Inserting Comments 5

Header Files 5

ESQL/C Preprocessor Support 7
Include Files 7
The $define and $undef Statements 8
The ifdef, ifndef, else, elif, and endif Statements 9

Using Host Variables in SQL Statements 9
Declaring Host Variables 10

Initializing Host Variables 11
Scope of Host Variables 11

Defining a Block 12
Types of Host Variables 12
Arrays of Host Variables 14
Structures as Host Variables 14
typedef Expressions as Host Variables 15
Null Values in Host Variables 15
Character Pointers as Host Variables 16
Host Variables as Function Parameters 16

Indicator Variables 17
Declaring Indicator Variables 17
Values Returned in Indicator Variables 18
Using Indicator Variables 18

Compiling INFORMIX-ESQL/C Programs 20
Syntax of the esql Command 21
Preprocessing Without Compiling or Linking 22
Using the Preprocessing Options 23

Checking for ANSI-Standard Syntax 23
Checking for Missing Indicator Variables 23
Numbering Lines 24
Redirecting Errors and Warnings 24
Defining and Undefining Values While Preprocessing 24
Using X/Open Codes and the -xopen Option 25
Setting the Scope of Cursor Names and Statement Ids 26
Case Sensitivity in Cursor Names and Statement Ids 26

Preprocessing, Compiling, and Linking with the esql Command 26
Syntax of the Compiling and Linking Options to the esql

Command 27
Passing Other Arguments to the cc Compiler 27
Passing Other C Source and Object Files to the cc Compiler 27
Using Other Libraries 27

A Sample INFORMIX-ESQL/C Program 28
Guide to demo1.ec 28
1-2

Chapter Overview
C programs that use INFORMIX-ESQL/C statements generally include the fol-
lowing elements, each of which is described in this chapter:

• Header files
• Include files
• Host variables
• Indicator variables
• SQL statements

Your program also can include dynamically defined statements, which are
described in Chapter 9 of this manual.

This chapter provides details on each of the following topics:

• Using header files in ESQL/C programs

• Supplying preprocessor support with ESQL/C

• Embedding SQL statements in C programs
• Identifying C variables with database constructs
• Preprocessing and compiling your C program

What Is INFORMIX-ESQL/C?
INFORMIX-ESQL/C is an application development tool that enables you to
embed SQL statements directly into C code. It consists of a code preprocessor,
header files, and libraries of C routines.

You create an ESQL/C program by writing a C program, including special
header files, and writing SQL statements into the program. You then run the
ESQL/C preprocessor on your code. The ESQL/C preprocessor takes your
code, reads all of the embedded SQL statements, and turns the embedded SQL
statements into C code. Once the C code is created, it is compiled and linked.
The process by which an ESQL/C program becomes an executable program is
shown in Figure 1-1.
1-3

Embedding SQL Statements in C Routines
Figure 1-1 Relationship between INFORMIX-ESQL/C and C

Embedding SQL Statements in C Routines
SQL statements are embedded in a C routine using the dollar sign ($) or the
EXEC SQL keywords. Use either of the following conventions to embed an
SQL statement in a C routine, replacing SQL_statement with the complete text
of a valid statement:

$SQL_statement;

EXEC SQL SQL_statement;

Note: Use of the EXEC SQL keywords (in place of the dollar sign ($)) conforms to
ANSI standards.

ESQL/C statements can include host variables (and usually indicator vari-
ables, as well) in most places a constant can be used. See the syntax of indi-
vidual statements in The Informix Guide to SQL: Reference for any exceptions.

Case Sensitivity in ESQL/C Files
The INFORMIX-ESQL/C preprocessor treats uppercase and lowercase letters
as distinct identifiers in variable names.

Statement ids (created with a PREPARE statement) and cursor names (created
with a DECLARE statement) are not case sensitive, by default.

ESQL/C source
program

ESQL/C preprocessor C source program
with SQL statements

C Language pre-
processor and

Executable
program

and ESQL/C calls

1 2

Stages 1 and 2

P C

compiler
1-4

Inserting Comments
The following example shows the creation of statement ids and cursor
names. Since the preprocessor is not case sensitive, the following code pro-
duces errors.

$PREPARE st FROM "select * from tab1";
$PREPARE ST FROM "insert into tab2 values (1,2)";/*duplicate*/
$DECLARE curname CURSOR FOR st;
$DECLARE CURNAME CURSOR FOR ST; /*duplicate*/

Note: If you want the ESQL/C preprocessor to be case sensitive with respect to cursor
names and statement ids, you can use the -cs option to the esql command when you
preprocess your program.

Inserting Comments
You can use a double dash (--) comment indicator on any INFORMIX-ESQL/C
line (one that has been prefaced by $ or EXEC SQL and terminated by a semi-
colon). The comment continues to the end of the line. For example, the fol-
lowing line of code includes a DATABASE statement that opens the stores5
database and a comment to that effect:

$database stores5; -- stores5 database is open now!

printf("\nDatabase opened\n"); /* This isn’t an ESQL/C line*/
/* so it needs a regular C notation for a comment*/
$begin work; /*You can also use a C comment here*/

You also can use a standard C comment on an INFORMIX-ESQL/C line, as
shown in the last line in the preceding example.

Header Files
Several header files are provided with INFORMIX-ESQL/C, all of which are
located in the /incl subdirectory of the $INFORMIXDIR directory. An INFOR-
MIX-ESQL/C program can include the following header files:

sqlca.h contains the structure in which error status codes are
stored. This file is automatically included when your
program is preprocessed, to allow checking the suc-
cess or failure of SQL statements.

sqlda.h contains the structures that contain value pointers
and descriptions of dynamically defined variables.
1-5

Header Files
sqlstype.h contains integer constants corresponding to SQL
statements; used with the DESCRIBE statement.

sqltypes.h contains the definitions of strings corresponding to C
language and SQL data types; used with the
DESCRIBE statement.

varchar.h contains macros that you can use with VARCHAR
data types.

locator.h contains the structure in which information about the
location of blobs (BYTE and TEXT data types) is stored.

sqlxtype.h contains the definitions of strings corresponding to C
language and SQL data types that are used when in
X/Open mode.

decimal.h contains the definition of the structure in which a
DECIMAL data type is stored.

datetime.h contains the definition of the structures in which
DATETIME and INTERVAL data types are stored.

Use a dollar sign ($) and the word “include” to add these files to your ESQL/
C code. Examples of including these files follow:

$include sqlca;
$include sqlda;
$include sqlstype;

The contents of a file that you include using the preceding syntax is placed
into the C code when you run the ESQL/C preprocessor on the ESQL/C code.

The sqlca.h file is automatically included by the preprocessor so that you can
check the success or failure of your ESQL/C statements. You need not include
any of the other header files (sqlda.h, sqlstype.h, varchar.h, or locator.h)
unless your program makes reference to the structures or the definitions
included in them.

The sqlca.h and sqlda.h files are described in detail in The Informix Guide to
SQL: Reference. You also can read more about the sqlca.h header file later in
this chapter, as well as in Chapter 7 of this manual. The sqlda.h header file
also is discussed later in this chapter, as well as in Chapter 8 of this manual.
The contents of sqltype.h is discussed in Chapter 9.
1-6

ESQL/C Preprocessor Support
ESQL/C Preprocessor Support
The INFORMIX-ESQL/C preprocessor works in two stages:

Stage 1 acts as a preprocessor for ESQL/C.

Stage 2 converts all of the embedded SQL code to C code.

Stages 1 and 2 of the ESQL/C preprocessor mirror the C language preproces-
sor and compiler stage, as shown in Figure 1-1.

You can take advantage of Stage 1 of the ESQL/C preprocessor to incorporate
other files into the source file or to define macros. You must include the files
or define the macros necessary for the compilation of embedded SQL state-
ments before Stage 2 of the preprocessor starts. It is not possible to use the C
preprocessor to perform conditional compilation of ESQL/C statements
because they were processed in Stage 2.

The ESQL/C preprocessor statements in Stage 1 have a similar syntax and
effect as their counterparts in the C preprocessor, except that they take effect
during input to the ESQL/C preprocessor.

You can use the following capabilities of the ESQL/C preprocessor when
designing your embedded code:

• Include files

• The define and undef statements

• Conditional compilation statements (ifdef, ifndef, else, elif, endif)

Your ESQL/C source file also can contain commands for the C compiler pre-
processor. These commands have no effect on ESQL/C statements but take
effect in their usual way when the C compiler processes the source file.

Include Files
You can include other INFORMIX-ESQL/C files in your program in addition
to header files. Do this by using the preprocessor statement $include or EXEC
SQL include. Use one of the following formats, replacing filename with the
name of the file to be included in your program:

$include fiilename;

EXEC SQL include fiilename;

Note: Use of the EXEC SQL keywords (in place of the dollar sign ($)) conforms to
ANSI standards.
1-7

The $define and $undef Statements
Stage 1 of the INFORMIX-ESQL/C preprocessor reads the contents of filename
into the current file at the position of the include statement before the
ESQL/C preprocessing occurs. The standard $include of C includes the file
after the ESQL/C preprocessor stage. You must use $include or EXEC SQL
include if the specified file contains SQL statements.

You can write an $include statement with or without quotation marks
around the filename.

$include filename;

$include "pathname/filename";

For example, to include the file constant_defs, you can use either of the fol-
lowing statements. If you use a full pathname, you must enclose the path-
name in quotes.

$include constant_defs;
$include "/work/esqlcstuff/constant_defs";

When you use a $include statement with a filename, the preprocessor looks
for the included file in this sequence:

1. In the current directory

2. In the directory $INFORMIXDIR/incl/esql (where $INFORMIXDIR repre-
sents the contents of the environment variable of that name)

3. In the directory /usr/include

The $define and $undef Statements
The remaining ESQL/C preprocessor statements have the same syntax and
effect as their counterparts in the C preprocessor, except that they take effect
during INFORMIX-ESQL/C preprocessing.

$define assigns a compile-time value to a name.

$undef removes a constant defined with $define.

The $define statement is limited to defining only symbols or integer con-
stants. It does not support defining string constants or macros of statements
that receive values at run time.
1-8

The ifdef, ifndef, else, elif, and endif Statements
The following three examples show how to use the $define statement.

$define MAXROWS 25;
$define USETRANSACTIONS 1;
$define TRANS;

The ifdef, ifndef, else, elif, and endif Statements
The INFORMIX-ESQL/C preprocessor does not support a general $if state-
ment; it supports only the $ifdef and $ifndef statements that test whether a
name has been $defined.

The preprocessor handles the following statements:

$ifdef tests a name and executes subsequent statements if it has
been defined with $define.

$ifndef tests a name and executes subsequent statements if it has not
been defined with $define.

$elif begins an alternative section to an $ifdef or $ifndef condi-
tion that checks for the presence of another $ifdef.

$else begins an alternative section to an $ifdef or $ifndef
condition.

$endif closes an $ifdef or $ifndef condition.

In the following example, the BEGIN WORK statement only compiles if the
name USETRANSACTIONS is defined:

$ifdef USETRANSACTIONS;
$begin work;
$endif;

Using Host Variables in SQL Statements
Host variables are normal C variables that you use in SQL statements. When
you use a host variable in an SQL statement, precede its name with a dollar
sign ($) or a colon (:). The host variable hostvar, for example, appears in an
SQL statement as $hostvar or :hostvar.

Note: Use of the colon (:) as a host-variable prefix conforms to ANSI standards.
1-9

Declaring Host Variables
Outside of an SQL statement, treat a host variable as you would a regular C
variable.

You can define as many host variables as you need (up to the limit set for the
symbol table of your C compiler).

Declaring Host Variables
Host variables are declared as ordinary C variables except that the declara-
tion must either be prefaced by a dollar sign ($) or contained within an EXEC
SQL BEGIN DECLARE SECTION / EXEC SQL END DECLARE SECTION.

Note: Use of the EXEC SQL BEGIN/END DECLARE SECTION keywords conforms to
ANSI standards.

Figure 1-2 shows an example of using the $ format to declare host variables.

/* pointer to a character */
$ char *hostvar;

/* integer */
$ int hostint;

/* double */
$ double hostdbl;

/* character array */
$ char hostarr[80];

/* structure */
$ struct {

int svar1;
int svar2;
...
} hoststruct;

Figure 1-2 Declaring host variables using the $ syntax
1-10

Scope of Host Variables
Figure 1-3 shows an example of using the EXEC SQL format to declare host
variables.

EXEC SQL BEGIN DECLARE SECTION
char *hostvar;
int hostint;
double hostdbl;
char hostarr[80];

EXEC SQL END DECLARE SECTION

EXEC SQL BEGIN DECLARE SECTION
struct {
int svar1;
int svar2;
...
} hoststruct;

EXEC SQL END DECLARE SECTION

Figure 1-3 Declaring host variables using the EXEC SQL syntax

Initializing Host Variables

INFORMIX-ESQL/C allows you to declare host variables with normal C ini-
tializer expressions. However, initializers containing character strings cannot
contain embedded semicolons or ESQL/C keywords. Some valid examples of
C initializers follow:

$int varname = 12;
$long cust_nos[8] = {0,0,0,0,0,0,0,9999};

Initializers are not checked for valid C syntax; they are simply copied to the
output. The C compiler diagnoses any errors.

Scope of Host Variables
The rules governing the scope of a host variable are the same as those gov-
erning regular C variables:

• A host variable is an automatic variable unless you explicitly define it as
external or static.

• A host variable declared in a function is local to that function and masks
a definition by the same name outside of the function.

• You cannot define a host variable more than once in the same block of
code.
1-11

Types of Host Variables
Defining a Block

You can ensure that the host variables declared within a block of code are
local to that block by using the combined symbol pair ${ and $} to open and
close the block. Alternatively, you can use a simple pair of braces, { and }. For
example, the host variable blk_int in Figure 1-4 is valid only in the block of
code between the braces, whereas p_int is valid in the block and outside of
the block.

$int p_int
...
$select customer_num into $p_int from customer

where lname = "Miller";
...
${

$ int blk_int
...
$blk_int = $p_int;
select customer_num into blk_int from customer

where lname = "Miller";
...

$}
...

Figure 1-4 Using braces to create a block of code

You can nest blocks up to 16 levels. The global level counts as level one.

Note: ANSI-standard syntax does not support the ${ and $} symbols.

Types of Host Variables
Since host variables appear in SQL statements, they are associated with an
SQL data type. In addition, a host variable must be declared as a C data type.
The relationship between SQL data types and C data types is described in
detail in Chapter 2. Figure 1-5 summarizes the relationship.
1-12

Types of Host Variables
SQL Type ESQL/C Predefined C Language Type
Data Type

CHAR(n) fixchar array[n], or char array [n + 1] or char *,
CHARACTER(n) string array [n+1]

BYTE loc_t
TEXT

DATE long int

DATETIME datetime or dtime_t

DECIMAL decimal or dec_t
DEC
NUMERIC
MONEY

SMALLINT short int

FLOAT double
DOUBLE PRECISION

INTEGER long int
INT

INTERVAL interval or intrvl_t

SERIAL long int

SMALLFLOAT float
REAL

VARCHAR(m,x) varchar[m+1] or char array[m+1]
string array[m+1]

Figure 1-5 Correspondence of SQL and C data types

If the host variable is not declared according to Figure 1-5, ESQL/C tries to
convert data types, if the conversion is meaningful. See Chapter 2 for a dis-
cussion of data conversion.
1-13

Arrays of Host Variables
Arrays of Host Variables
INFORMIX-ESQL/C understands and supports the declaration of arrays of
variables. You must provide an integer value as the size of the array when
you declare the array. An array of host variables can be either one or two
dimensional.

You can use elements of an array within ESQL/C statements. For example, if
you declare

$long customer_nos[10];

the following is possible:

for (i=1; i<10; i++)
{
$fetch customer_cursor into $customer_nos[i];
}

However, for data types other than CHAR, you cannot use the array name
alone.

Structures as Host Variables
Structures can be declared as INFORMIX-ESQL/C host objects. In ESQL/C
statements, you can name the structure variable as a whole or as its individ-
ual components. If a structure name is used, it is expanded into a list of com-
ponent names. Structures can be nested.

$struct customer_t
{
int c_no;
char fname[32];
char lname[32];
} cust_rec;
$struct customer_t cust2_rec;

With the preceding declaration,

$insert into customer values ($cust_rec);
1-14

typedef Expressions as Host Variables
is equivalent to

$insert into customer
values ($cust_rec.c_no, $cust_rec.fname,
$cust_rec.lname);

typedef Expressions as Host Variables
ESQL/C supports standard C typedef expressions and allows their use as host
variables. For example, the following code creates the smallint type as a short
integer and the serial type as a long integer. It then declares a row_nums vari-
able as a serial type and a variable counter as a smallint.

$typedef short smallint;
$typedef long serial;
$serial row_nums [MAXROWS];
$smallint counter;

You cannot use a typedef that names a multidimensional array or a union as
a host variable.

Null Values in Host Variables
The representation of null values depends on both the machine and the data
type. Often, the representation does not correspond to a legal value for the C
data type, and you should not attempt to perform arithmetic or other opera-
tions on a host variable that can have a null value.

INFORMIX-ESQL/C provides a function that enables you to test whether a
host variable corresponds to a null value (risnull), and a function to set a host
variable to a null value (rsetnull). See Chapter 2 for a description of these
functions. You also can define indicator variables for host variables that cor-
respond to database columns that allow null values.
1-15

Character Pointers as Host Variables
Character Pointers as Host Variables
You can declare a character pointer as a host variable if the host variable is
only used to input data to an SQL statement. For example, Figure 1-6 shows
how you can associate a cursor with a statement and insert values into a
table.

$char *s;
$char *i;
...
stcopy("select * from cust_calls",s);
stcopy("NS",i);
...
$prepare x from $s;
$insert into state values ($i, "New State");

Figure 1-6 Declaring a character pointer to input data

If you declare a character pointer as a host variable and use it to receive data
from a SELECT statement, you receive a compile-time warning and your
results may be truncated.

Host Variables as Function Parameters
You can use host variables as parameters to functions. You must precede the
name of the host variable with the parameter keyword when you declare a
host variable as a function parameter. For example, Figure 1-7 shows an
example that expects three parameters, two of which are host variables.

f(s, id, s_size)
$parameter char s[20];
$parameter int id;
int s_size;
{
select fname into $s from customer

where customer_num = $id;
...
}

Figure 1-7 Declaring host variables as parameters to functions

You cannot declare a parameter variable inside a block of C code.

You cannot use the parameter keyword in declarations of host variables that
are not part of a function header. Doing so causes unpredictable errors.
1-16

Indicator Variables
ANSI C function parameter syntax is not currently supported. Therefore, you
cannot use the parameter keyword in an ANSI C function header.

You can declare parameter variables within an EXEC SQL BEGIN DECLARE /
EXEC SQL END DECLARE section. For example, the function header in
Figure 1-7, when written using a DECLARE section, is shown in Figure 1-8.

f(s, id, s_size)
EXEC SQL BEGIN DECLARE SECTION

parameter char s[20];
parameter int id;

EXEC SQL END DECLARE SECTION
int s_size;

Figure 1-8 Using EXEC SQL BEGIN DECLARE in a function header

Indicator Variables
Since a null value is often not a definite value among other values, you must
be able to determine whether an INFORMIX-ESQL/C statement returns a null
value to a host variable. If a host variable corresponds to a database column
that allows null values, you should define an indicator variable in association
with a host variable. The associated host variable is called a main variable.

In addition to allowing a program to check for null values, an indicator vari-
able can be used to check for truncated values that are returned by the data-
base server.

Declaring Indicator Variables
To declare an indicator variable, declare the variable as an integer. For exam-
ple, the following code declares the variable nameind as a short integer. It can
then be used as an indicator variable.

$short nameind;

Indicator variables can be of any valid host variable data type except
DATETIME or INTERVAL.
1-17

Values Returned in Indicator Variables
Values Returned in Indicator Variables
When an INFORMIX-ESQL/C statement returns a null value to a host variable
(through the INTO clause of a SELECT or FETCH statement) and you defined
an indicator variable, the indicator variable has a value of -1. The actual value
in the host variable might not be a meaningful C value. If you did not assign
an indicator variable to the host variable and a null value is returned, ESQL/
C might generate an error, depending on how you compile the program:

• If you compile the program using the -icheck flag, ESQL/C generates an
error and sets sqlca.sqlcode to a negative value when a null value is
returned and no indicator variable is present. (See Chapter 7, “Error
Handling.”)

• If you compile the program without using the -icheck flag, ESQL/C does
not generate an error when a null value is returned and no indicator vari-
able is present.

When a non-null SQL value is retrieved into a host variable character array, it
can be truncated to fit. In this case, ESQL/C sets the associated indicator vari-
able equal to the size in bytes of the SQL variable before truncation. The fact
of truncation is signaled in the sqlca structure; the indicator variable tells you
the length of the truncated value. If the returned value is neither null nor
truncated, the indicator variable has the value 0.

Using Indicator Variables
You specify an indicator variable in an SQL statement in one of two ways:

• Place a colon (:) between the main (host) variable name and the indicator
variable name. (You can use a dollar sign ($) instead of a colon, but the
colon makes the code easier to read.) Use the following format:

$hostvar:hostvarind

$hostvar$hostvarind

• Place the INDICATOR keyword between the main variable name and the
indicator variable name. Use the following format:

$hostvar INDICATOR:hostvarind

$hostvar INDICATOR hostvarind

Note: Use of the INDICATOR keyword conforms to ANSI standards.
1-18

Using Indicator Variables
The code segments in Figure 1-9 and Figure 1-10 show examples of using
indicator variables with host variables. In both examples, if lname is defined
in the customer table as having a length longer than 15 characters, nameind
contains the actual length of the lname column. The name host variable con-
tains the first 15 characters of the lname value (the string name must be ter-
minated with a null character). If the last name of the company representative
with customer_num = 105 is shorter than 15 characters, only trailing blanks
are truncated.

If company has a null value for this same customer, compind has a negative
value. The contents of the character array comp cannot be predicted.

$char name[16];
$char comp[20];
$short nameind;
$short compind;
.
.
.
$select lname, company

into $name:nameind, $comp:compind
from customer
where customer_num = 105;

Figure 1-9 Using indicator variables with the $ and : symbols

EXEC SQL BEGIN DECLARE SECTION
char name[16];
char comp[20];
short nameind;
short compind;

EXEC SQL END DECLARE SECTION
.
.
.

EXEC SQL
select lname, company

into $name:nameind, $comp:compind
from customer
where customer_num = 105;

Figure 1-10 Using indicator variables with the EXEC SQL and : symbols

As an alternative to using the NULL keyword in an INSERT statement, you
can use a host variable with a negative indicator variable.
1-19

Compiling INFORMIX-ESQL/C Programs
Compiling INFORMIX-ESQL/C Programs
Before you can use the C compiler, you must preprocess your code that con-
tains INFORMIX-ESQL/C statements. The ESQL/C preprocessor converts the
embedded statements to C language code. You can then compile the resulting
file with the C compiler to create an object file, which you can link with the
ESQL/C libraries and your own libraries. You can use the esql command file
that is installed with ESQL/C to perform all these tasks.

To preprocess and compile a C program that contains ESQL/C statements,
give its filename the extension .ec and enter an esql command at your system
prompt. The environment variable INFORMIXDIR must be set correctly for
the esql command to work effectively. See Chapter 4 of The Informix Guide to
SQL: Reference for a complete description of INFORMIXDIR.
1-20

Syntax of the esql Command
Syntax of the esql Command

-ansi checks for Informix extensions to ANSI standard syntax.

ccargs arguments passed to the cc compiler.

-cs indicates case sensitivity for cursor names and state-
ment ids.

-e preprocesses only, no compiling or linking.

-EDname defines a user-supplied name to the preprocessor. This is
the same as using a $define statement with name at the
top of your ESQL/C program.

esql

Pre-
processor
Naming
Options

ccargs

-e

Pre-
processor
Naming
Options

source.ec

source.ec

-V

Compiling/
Linking
Options
p. 1-27

executable
name

-o

-g

-G

-ansi

-nln

-EUname-EDname

= value

-log

Pre-
processor
Naming
Options

type-t

-xopen

-local

-icheck -cs

errorfile
1-21

Preprocessing Without Compiling or Linking
-EUname undefines a specified preprocessor name flag. This is the
same as using a $undef statement with name in your
ESQL/C program.

-g numbers every line (used by a debugger).

-G no line number (used by a debugger; same as -nln).

-icheck generates the code to check for a null value returned to
a host variable that does not have an indicator variable
associated with it; generates an error if such a case exists.

-local specifies that the static cursor names and static state-
ment ids that you declare in a file are local to that file. If
you do not use the -local option, cursor names and state-
ment ids, by default, are global entities.

-log errorfile sends the error and warning messages to the specified
file instead of to standard output.

-nln no line number (used by a debugger; same as -G).

-o executable name specifies the name of the executable file.

source.ec specifies the name of the source file containing ESQL/C
statements and C code. The file must have a .ec
extension.

-V prints preprocessor version information.

=val lets you assign an initial value to the name, for
example: -EDMACNAME=62. This is equivalent to the
line: $ define MACNAME 62; at the top of your ESQL/
C program.

-xopen indicates that the X/Open set of codes for the data types
are used when a GET DESCRIPTOR or SET DESCRIPTOR
statement is executed. It also generates warning mes-
sages for dynamic SQL statements that use Informix
extensions to the X/Open standard.

Preprocessing Without Compiling or Linking
You can choose only to preprocess your ESQL/C program. To preprocess the
code, use the esql command with the -e option and the appropriate parame-
ters. The preprocessor creates a C program.

For example, to preprocess the program that resides in the file demo1.ec, you
use the following command:

esql -e demo1.ec
1-22

Using the Preprocessing Options
If you want to preprocess demo1.ec, check for Informix extensions to ANSI-
standard syntax, and not use line numbers, you use the following command:

esql -e -ansi -G demo1.ec

Using the Preprocessing Options
All of the preprocessor options described in the following sections can be
used when either preprocessing only or when preprocessing, compiling, and
linking.

Checking for Informix Extensions to ANSI-Standard Syntax

Use the -ansi argument to check for Informix extensions to ANSI-standard
syntax. If you included Informix extensions to ANSI-standard syntax in your
code, you receive warning messages when the file is preprocessed.

The following command preprocesses and compiles the demo1.ec program
and verifies that it does not contain any Informix extensions to the ANSI-
standard syntax:

esql -ansi demo1.ec

If you set the DBANSIWARN environment variable, your embedded SQL code
is checked automatically for Informix extensions. You do not need to use the
-ansi flag if you set DBANSIWARN. (See Chapter 4 of The Informix Guide to
SQL: Reference for more information about DBANSIWARN.) If DBANSIWARN
is set, a compiled user program can make run-time checks on Informix exten-
sions to ANSI SQL syntax by using the sqlca (SQL Communications Area)
structure, whether or not you compile with the -ansi parameter. (See
Chapter 7 of this manual for details about error handling.)

Checking for Missing Indicator Variables

If you include the -icheck option, the preprocessor generates code in your
program that returns an error if an SQL statement returns a null value to a
host variable that does not have an associated indicator variable. If you do
not use the -icheck option, no error is returned at run time if a null value is
passed to a host variable without an indicator variable.

esql -icheck demo1.ec
1-23

Using the Preprocessing Options
Numbering Lines

By default, as the embedded SQL lines in your program are preprocessed,
they are given a line number. If you want to include line numbers for every
line (C and embedded SQL), use the -g option. If you do not want any line
numbers, use the -G or -nln options.

Redirecting Errors and Warnings

By default, errors and warnings generated when you run esql are sent to
standard output. If you want the errors and warnings to be put into a file, use
the -log option with the filename. For example, the following command com-
piles the program demo1.ec and sends the errors to the err.out file:

esql -log err.out -o demorun demo1.ec

Defining and Undefining Values While Preprocessing

You can use the -ED and -EU options to define or undefine values during pre-
processing. Do not put a space between ED and the symbol name or between
EU and the symbol name. Using -EDname is equivalent to using $define name.
The -ED option is processed before the code in your source file is prepro-
cessed. The -EU option has the global effect of a $undef statement over the
whole file.
1-24

Using the Preprocessing Options
For example, if you use the following command line on the code in
Figure 1-11, no code is generated because the ENABLE_CODE value was
undefined from the command line:

esql -EUENABLE_CODE define_ex.ec

/* define_ex.ec */
#include <stdio.h>
$include sqlca;
$define ENABLE_CODE;

main()
{...
$ifdef ENABLE_CODE;

printf(“First block enabled”);
$endif ENABLE_CODE;
...
$ifndef ENABLE_CODE;

$ define ENABLE_CODE;
$endif ENABLE_CODE;
...
$ifdef ENABLE_CODE;

printf(“Second block enabled”);
$endif ENABLE_CODE;
}

Figure 1-11 ESQL/C excerpt that uses ifdef, ifndef, and endif

You can define a numeric constant using the -ED option as shown in the fol-
lowing example:

esql -EDMAXLENGTH 10 demo1.ec

Using X/Open Codes and the -xopen Option

If you include the -xopen option on the command line, your program is pre-
processed using the X/Open codes for the SQL data types. If you use X/Open
SQL in an ESQL/C program, all previous programs in the same application
must be recompiled with the -xopen option. If you use the -xopen option,
warning messages are generated for dynamic statements that use Informix
extensions to the X/Open standard.

See Chapter 9 of this manual for more information about X/Open SQL.
1-25

Preprocessing, Compiling, and Linking with the esql Command
Setting the Scope of Cursor Names and Statement Ids

If you use the -local option, static cursor names and static statement ids that
you declare in a file are local to that file. If you do not use the -local option,
cursor names and statement ids, by default, are global entities.

You cannot mix files compiled with and without the -local flag. If you mix
them, you receive unpredictable results.

If you use the -local option, you must recompile the source files every time
you rename them.

INFORMIX-ESQL/C adds a unique tag (two to nine characters long) to the cur-
sor names and statement ids in an ESQL/C program. If the combined length
of the cursor name (or statement id) and the unique tag exceeds 18 characters,
you receive a warning message.

Case Sensitivity in Cursor Names and Statement Ids

You can use the -cs option to specify that cursor names and statement ids are
case sensitive. If you do not use this option, cursor names and statement ids
are not case sensitive. If you include statements such as those in the following
example and do not use the -cs option, you receive an error; the preprocessor
interprets this as a redeclaration of the same name:

$PREPARE st FROM "SELECT * FROM tab1";
$PREPARE ST FROM "INSERT INTO tab2 VALUES (1,2)";
$DECLARE curname CURSOR FOR st;
$DECLARE CURNAME CURSOR FOR ST;

If you use the -cs option with the previous example, no error is generated.

This option is included in this release for backward compatibility and its use
is not recommended. The -cs option will not be available after Version 5.0.

Preprocessing, Compiling, and Linking with the esql
Command

You can use the esql command to preprocess, compile, and link your pro-
gram to other programs all in one step. You can specify any of the ESQL/C
preprocessing options, as well as the compiling and linking options. The fol-
lowing illustration contains the syntax of the compiling and linking options
to the esql command:
1-26

Preprocessing, Compiling, and Linking with the esql Command
Syntax of the Compiling and Linking Options to the esql Command

-lsystemlib indicates other system libraries that you want to link.

otherCobj.o indicates a C object file that you want to link with
source.ec.

otherCsrc.c indicates a C source file that you want to compile and
link with source.ec.

yourlib.a indicates your own special library that you want to
link.

Passing Other Arguments to the cc Compiler

If you include options in the command line that are not supported by the esql
command, the arguments are passed to the cc compiler. For example, the fol-
lowing command passes the -c argument to cc, which creates an object file:

esql -c demo1.ec

Passing Other C Source and Object Files to the cc Compiler

If you list other files with the .c extensions, the esql command passes them
straight through to the C compiler cc to produce source.o and otherCsrc.o.
These files are then linked with the appropriate INFORMIX-ESQL/C library
routines, along with other C object files (otherCobj.o) that you include on the
command line.

Using Other Libraries

If you want to use your own libraries or system libraries, you must explicitly
include their names on the command line (for example, libm.a for mathemat-
ical functions).

Compiling/
Linking
Options

otherCsrc.c otherCobj.o yourlib.a -l systemlib
1-27

A Sample INFORMIX-ESQL/C Program
A Sample INFORMIX-ESQL/C Program
The demo1.ec program illustrates most of the concepts presented in this
chapter. It demonstrates how to use header files, declare and use host vari-
ables, and embed SQL statements.

Guide to demo1.ec
The sample INFORMIX-ESQL/C program, demo1.ec, uses a SELECT statement
with no free parameters. That is, all of the information needed to run the
SELECT statement is contained in the program and known at compile time.

The demo1.ec program reads a subset of the first and last names (those that
start with C and later letters) from the customer table in the stores5 database.
Two host variables ($fname and $lname) are used to hold the data from the
customer table. A cursor is declared to manage the information that is
retrieved from the table. The rows are fetched one by one and the names are
printed to standard output.

1 #include <stdio.h>
2 $include sqlca;
3
4 /* Uncomment the following line if the database has
5 transactions: */
6
7 /* $define TRANS; */
8
9 $define FNAME_LEN 15;
10 $define LNAME_LEN 15;
11
12 main()
13
14 {
15 $char fname[FNAME_LEN + 1];
16 $char lname[LNAME_LEN + 1];
17
18 printf("\nDEMO1 Sample ESQL program running.\n\n");
19
20 $database stores5;
21
22 $declare democursor cursor for
23 select fname, lname
24 into $fname, $lname
25 from customer
26 where lname > "C";

Continued on page 1-30
1-28

Guide to demo1.ec
Lines 1 to 3

The #include <stdio.h> statement includes the stdio.h UNIX header file from
the /usr/include directory. The stdio.h file enables demo1 to use the standard
I/O library. The sqlca.h file is an ESQL/C header file that defines the structure
that holds information about ESQL/C errors when they occur.

Lines 4 to 10

Lines 4 through 10 contain code that are processed by Stage 1 of the ESQL/C
preprocessor. Lines 4 through 6 are comment lines for line 7, which, if uncom-
mented, defines TRANS, a symbol that indicates that the database was created
so that it uses transactions. Lines 9 and 10 define the constants FNAME_LEN
and LNAME_LEN for use in host variable definitions later in the program.

Lines 15 and 16

These lines define host variables for the fname and lname columns of the
customer table. A host variable receives data that is fetched from a table and
supplies data that is written to a table. The length of the fname array is one
greater than the length of the character column with which it is associated.
The extra byte is necessary to hold the null-terminator.

Line 18

Line 18 simply lets the user of the program know that the program started to
execute.

Line 20

Line 20 is the first SQL statement in the program. It opens the database named
stores5. The stores5 database must be created before it can be opened.

Lines 22 through 26

These lines contain a DECLARE statement that creates a cursor named
democursor to manage the data that is read from the customer table. The
type of data that is read from the table is determined by the SELECT statement
contained in the DECLARE statement on lines 23 through 26. According to the
SELECT statement, only the first and last names of the customers whose last
name (lname) starts with a C or a later letter are read.
1-29

Guide to demo1.ec
27 $ifdef TRANS;
28 $begin work;
29 $endif;
30
31 $open democursor;
32
33 for (;;)
34 {
35 $fetch democursor;
36 if (sqlca.sqlcode != 0) break;
37 printf("%s %s0,fname, lname");
38 }
39
40 $close democursor;
41
42 $ifdef TRANS;
43 $commit work;
44 $endif;
45
46 printf("\nProgram Over.\n");
47 }

Lines 27 to 29

Lines 27 and 29 are processed by Stage 1 of the ESQL/C preprocessor. If the
TRANS symbol is set, the lines between the $ifdef and $endif are compiled.
In this case, the BEGIN WORK statement on line 28 is compiled into the code.

Line 31

The OPEN statement opens the democursor cursor.

Line 33 to 38

This section of code is a FOR loop that contains a FETCH statement. For each
iteration of the loop, the FETCH statement uses the democursor cursor to
select a row from the table and put the data from that row into the host vari-
ables fname and lname. As long as sqlca.sqlcode equals zero, the data was
fetched successfully and the loop continues. If an error occurs, the database
server sets sqlca.sqlcode to a non-zero number. When all of the rows that
matched the SELECT criteria are fetched, the database server sets sqlca.sql-
code to 100. So, when the value of sqlca.sqlcode is not equal to zero, the loop
is exited. For more information about the SQLCA structure, see Chapter 5 of
The Informix Guide to SQL: Reference.
1-30

Guide to demo1.ec
Line 40

The CLOSE statement dissociates the cursor from the SELECT statement.

Line 42 to 4:

If the TRANS symbol is set, line 43 (COMMIT WORK) is compiled. In this case,
the BEGIN WORK statement on line 28 would also have been compiled into
the code.

Line 44 and 45

The last two lines of the program simply tell the user that the program is over
and close the main function.
1-31

Guide to demo1.ec
1-32

Chapter
2
INFORMIX-ESQL/C
Data Types
Chapter Overview 3

Choosing Data Types for Host Variables 3
Defined Integers for Data Types 5
Character Data Type Choices 5

Data Conversion 6
When Conversion Occurs 6
What Happens in a Conversion 7
Numbers to Strings 8
Numbers to Numbers 8
Operations on Numeric Values 8
Data Conversion When Fetching Rows 9
Converting Between DATETIME and DATE Data

Types 9
Converting Between VARCHAR and Character Data

Types 10

Data Type Function Descriptions 12
RISNULL 13
RSETNULL 16
RTYPALIGN 19
RTYPMSIZE 22
RTYPNAME 25
RTYPWIDTH 28

Numeric-Formatting Routines 31
Formatting Numeric Strings 31
Example Format String 33
Example Format String 34
Example Format String 35

Example Format String 36
RFMTDOUBLE 37
RFMTLONG 40
2-2

Chapter Overview
This chapter contains information about the SQL and C data types you can
use to manipulate values in your INFORMIX-ESQL/C program. It also con-
tains information about the routines available to you to determine and work
with data types in ESQL/C. This chapter includes the following topics:

• Choosing the appropriate data type for a host variable

• Converting from one data type to another

• Working with routines that you can use with different data types

• Working with routines that you can use with null values

Choosing Data Types for Host Variables
Since host variables appear in SQL statements, they are associated with an
SQL data type. The SQL data types that are available in a database are
described in detail in Chapter 3 of The Informix Guide to SQL: Reference. For
each column of a table in a database, you must declare a host variable of the
appropriate C data type. The correspondence between SQL data types and
host variable types is outlined in Figure 2-1.
2-3

Choosing Data Types for Host Variables
SQL Type ESQL/C Predefined C Language Type
Data Type

CHAR(n) fixchar array[n], or char array [n + 1] or char *,
CHARACTER(n) string array [n+1]

BYTE loc_t
TEXT

DATE long int

DATETIME datetime or dtime_t

DECIMAL decimal or dec_t
DEC
NUMERIC
MONEY

SMALLINT short int

FLOAT double
DOUBLE PRECISION

INTEGER long int
INT

INTERVAL interval or intrvl_t

SERIAL long int

SMALLFLOAT float
REAL

VARCHAR(m,x) varchar[m] or char array[m+1]
string array[m+1]

Figure 2-1 Correspondence between SQL and C data types

If you declare a host variable for a DATE, SMALLINT, FLOAT, INTEGER, or
SERIAL database column, the host variable is simply a C-language variable of
the type specified in Figure 2-1.

If you use BYTE, DECIMAL, DATETIME, INTERVAL, MONEY, TEXT, or
VARCHAR columns, you must use the appropriate INFORMIX-ESQL/C pre-
defined data type, or structure, as a host variable. Using these specialized
2-4

Defined Integers for Data Types
structures is described in detail in other chapters of this manual. The follow-
ing list details where you can find the description of how to use the host data
type:

BYTE Chapter 6, “Working with Binary Large Objects”

DATETIME Chapter 5, “Working with Time Data Types”

DECIMAL Chapter 4, “Working with the DECIMAL Data Type”

INTERVAL Chapter 5, “Working with Time Data Types”

MONEY Chapter 4, “Working with the DECIMAL Data Type”

TEXT Chapter 6, “Working with Binary Large Objects”

VARCHAR Chapter 3, “Working with Character and String Data Types”

Defined Integers for Data Types
The sqltypes.h header file has a defined integer equivalent for each Informix
database data type. For example, some of the entries in sqltypes.h are shown
in Figure 2-2. (For brevity, only a few statement types are shown.)

#define SQLINT 2
#define SQLFLOAT 3
#define SQLSMFLOAT 4
#define SQLDECIMAL 5
#define SQLSERIAL 6
#define SQLDATE 7
#define SQLMONEY 8
.
.
.

Figure 2-2 Excerpt from sqlstype.h file

These predefined data types are used as arguments for some of the routines
in the ESQL/C library. When you need to use a definition, check the contents
of the sqltypes.h file for the appropriate value.

Character Data Type Choices
If you use a character data type for your database column, you can choose the
char, string, fixchar, or varchar data type for your host variable. The differ-
ences between the three data types are as follows:

char The char data type pads the value with trailing blanks up to
the size the CHAR column returned. The char data type is
2-5

Data Conversion
null-terminated. It should be declared with a length of [n+1],
where n is the size of the column, to allow for the terminat-
ing null.

string The string data type differs from the char data type by trun-
cating trailing blanks before inserting a null character to sig-
nal the end of the string. It should be declared with a length
of [n+1], where n is the size of the column, to allow for the
terminating null.

fixchar The fixchar data type is the same as the char data type except
that it does not add the trailing null byte to terminate the
string. This means that you can declare a fixchar host vari-
able corresponding to a CHAR(n) column as an array with n
components.

varchar The varchar data type is implemented as an array of charac-
ters. The varchar data type is null-terminated.It should be
declared with a length of [m+1], where m is the maximum
size of the column, to allow for the terminating null.

See Chapter 3, “Working with Character and String Data Types,” for more
information about using character variables.

Data Conversion
When there is a discrepancy between the data type of a database variable and
that of the host variable, or between the data type of two columns, ESQL/C
attempts to convert one data type into the other. This includes the conversion
of a CHAR data type into a number data type when the CHAR variable is a
representation of a number. For example, when a comparison is made
between a CHAR value and a number value, ESQL/C converts the CHAR value
to a number value.

When Conversion Occurs
If you try to assign a value from a database table into a host variable that is
not declared according to the correspondence shown in Figure 2-1, ESQL/C
attempts to convert data types, if the conversion is meaningful.
2-6

What Happens in a Conversion
Conversion can occur in many situations. The following list names a few
common conversion situations:

• If you use a condition that compares two different types of values, such
as comparing the contents of a zip code column to an integer value.

• If you insert values into a table using a host variable of one type and a
receiving column of another type.

• If a numeric value of one type operates on a value of another type, both
values are converted to a DECIMAL data type before the operation occurs.

What Happens in a Conversion
If a number type is converted to a character data type, a string is created for
the character data type.

If conversion is not possible, either because it makes no sense or because the
receiving variable is too small to accept the converted value, ESQL/C returns
values as described in Figure 2-3, where N represents a number type and C
represents a character type:

Conversion Problem Result

C → C Does not fit The string is truncated;
sqlca.sqlwarn.sqlwarn1 is
set to W; the indicator variable is set
to the size of the original string.

N→ C Does not fit The string is filled with asterisks;
sqlca.sqlwarn.sqlwarn1
is set to W; the indicator variable
is set to a positive integer.

C→ N Not a number The number is undefined;
sqlca.sqlcode is set to negative.

C→ N Overflow The number is undefined;
sqlca.sqlcode is negative.

N → N Overflow The number is undefined;
sqlca.sqlcode is negative.

Figure 2-3 Number to character data type conversion problems and results
2-7

Numbers to Strings
Numbers to Strings
The conversion of a number type to a character type occurs through creating
a string. INFORMIX-ESQL/C uses an exponential format for very large or very
small numbers.

Numbers to Numbers
If two values of different types operate on one another, they are converted to
a DECIMAL value and then the operation occurs.

Operations on Numeric Values
INFORMIX-ESQL/C carries out all arithmetic in an arithmetic expression in
type decimal. The type of the resulting variable determines the format of the
stored or printed result. The following rules apply to the precision and scale
of the decimal variable that results from an arithmetic operation on two
numbers:

• All operands, if not already decimal, are converted to decimal and the
resulting number is decimal.

Convert Type To

FLOAT decimal(16)
SMALLFLOAT decimal(8)
INTEGER decimal(10,0)
SMALLINT decimal(5,0)

• The precision and scale of the result of an arithmetic operation depend on
the precision and scale of the operands and on the type of arithmetic
expression. The rules for arithmetic operations on operands with definite
scale are summarized in Figure 2-4 (at the end of this section). When one
of the operands has no scale (floating decimal), the result is a floating
decimal.

• If the operation is addition or subtraction, ESQL/C adds trailing zeros to
the operand with the smaller scale until the scales are equal.

• If the type of the result of an arithmetic operation requires the loss of sig-
nificant digits, ESQL/C reports an error.

• Leading or trailing zeros are not considered significant digits and do not
contribute to the determination of precision and scale.
2-8

Data Conversion When Fetching Rows
In Figure 2-4, let p1 and s1 be the precision and scale of the first operand, and
let p2 and s2 be the precision and scale of the second operand.

Operation Precision and Scale of Result

Addition and Precision: MIN(32, MAX(p1- s1, p2 - s2) + MAX(s1, s2) + 1)
Subtraction Scale: MAX(s1, s2)

Multiplication Precision: MIN(32, p1+ p2)
Scale s1+ s2

Division Precision: 32
Scale: 32 - p1 + s1 - s2 (cannot be negative)

Figure 2-4 Precision and scale of decimal results

Data Conversion When Fetching Rows
You can automatically convert DATETIME and INTERVAL values between
database columns and host variables of character type char, string, or fixchar.
The fields of the DATETIME or INTERVAL value in the database are converted
to a character string, which is stored in the host variable. If the host variable
is too short, the string is truncated, sqlca.sqlwarn.sqlwarn1 is set to W and
the indicator variable (if any) is set to the needed length.

Note that DATETIME and INTERVAL values cannot be fetched automatically
into number host variables.

Converting Between DATETIME and DATE Data Types
No functions are provided to convert automatically between the DATETIME
and DATE data types. You can perform these conversions using existing func-
tions and intermediate strings.

To convert a DATETIME value to a DATE value, use these steps:

1. Use dtextend to adjust the DATETIME qualifier to year to day.

2. Apply dttoasc, creating a character string in the form yyyy-mm-dd.

3. Use rdefmtdate with a pattern argument of yyyy-mm-dd to convert the
string to a DATE value.
2-9

Converting Between VARCHAR and Character Data Types
To convert a DATE value into a DATETIME value, use these steps:

1. Declare a host variable with a qualifier of year to day (or, initialize the qual-
ifier with the value returned by TU_DTENCODE(TU_YEAR,TU_DAY).

2. Use rfmtdate with a pattern of yyyy-mm-dd to convert the DATE value to
a character string.

3. Use dtcvasc to convert the character string to a value in the prepared
DATETIME variable.

4. If necessary, use dtextend to adjust the DATETIME qualifier.

Converting Between VARCHAR and Character Data Types
Figure 2-5 shows the conversion of VARCHAR data to char, string, and fix-
char character data types. When calculating the length of the source item,
trailing spaces are not counted.

Source Destination Result
VARCHAR char If the source is longer, truncate,

set indicator, and null terminate.
If the destination is longer,
pad with trailing spaces and
null terminate.

VARCHAR fixchar If the source is longer, truncate and
set indicator. If the destination is
longer, pad with trailing spaces.

VARCHAR string If the source is longer, truncate,
set indicator, and null terminate.
If the destination is longer,
null terminate.

char VARCHAR If the source is longer than the
max VARCHAR, truncate,
set indicator, and null terminate.
If the max VARCHAR is longer
than the source, the destination
length = source “length” and
null terminate.

fixchar VARCHAR If the source is longer than the
max VARCHAR, truncate, set
indicator, and null terminate.
If the max VARCHAR is longer
than the source, the destination
length = source “length” and
null terminate.
2-10

Converting Between VARCHAR and Character Data Types
string VARCHAR If the source is longer than the
max VARCHAR, truncate, set
indicator, and null terminate.
If the max VARCHAR is longer
than the source, the destination
length = source “length” and
null terminate.

Figure 2-5 Converting VARCHAR data types to and from host data types

Figure 2-6 shows VARCHAR to character data type conversion examples. (A
+ represents a space character.)

Source Destination

Type Contents Length Type Contents Indicator

VARCHAR(9) Fairfield 9 char(5) Fair\0 9
VARCHAR(9) Fairfield 9 char(12) Fairfield++\0 0
VARCHAR(12) Fairfield+++ 12 char(10) Fairfield\0 12
VARCHAR(10) Fairfield+ 10 char(4) Fai\0 10
VARCHAR(11) Fairfield++ 11 char(14) Fairfield++++\0 0

VARCHAR(9) Fairfield 9 fixchar(5) Fairf 9
VARCHAR(9) Fairfield 9 fixchar(10) Fairfield+ 0
VARCHAR(10) Fairfield+ 10 fixchar(9) Fairfield 10
VARCHAR(10) Fairfield+ 10 fixchar(6) Fairfi 10
VARCHAR(10) Fairfield+ 10 fixchar(11) Fairfield++ 0

VARCHAR(9) Fairfield 9 string(4) Fai\0 9
VARCHAR(9) Fairfield 9 string(12) Fairfield\0 0
VARCHAR(12) Fairfield+++ 12 string(10) Fairfield\0 12
VARCHAR(11) Fairfield++ 11 string(6) Fairf\0 11
VARCHAR(10) Fairfield++ 10 string(11) Fairfield\0 0

Figure 2-6 Converting VARCHAR data types to character data types

Figure 2-7 shows character to VARCHAR data type conversion examples.
2-11

Data Type Function Descriptions
 Source Destination

Type Contents Length Type Contents Length
char(10) Fairfield\0 10 VARCHAR(4) Fair 4
char(10) Fairfield\0 10 VARCHAR(11) Fairfield 9
char(11) Fairfield++\0 11 VARCHAR(9) Fairfield 9
char(12) Fairfield+++\0 12 VARCHAR(6) Fairfi 6
char(10) Fairfield+\0 10 VARCHAR(11) Fairfield 9

fixchar(9) Fairfield 9 VARCHAR(3) Fai 3
fixchar(9) Fairfield 9 VARCHAR(11) Fairfield 9
fixchar(11) Fairfield++ 11 VARCHAR(9) Fairfield 9
fixchar(13) Fairfield++++ 13 VARCHAR(7) Fairfie 7
fixchar(10) Fairfield+ 10 VARCHAR(12) Fairfield 9

string(9) Fairfield\0 9 VARCHAR(4) Fair’ 4
string(9) Fairfield\0 9 VARCHAR(11) Fairfield 9

Figure 2-7 Converting character data types to VARCHAR data types

Data Type Function Descriptions
The following table lists the set of Informix library functions that act on more
than one data type, work on null values, or format certain variable types.
Those beginning with rtyp provide machine-independent size and alignment
information for different data types. Those beginning with rfmt convert a
value to a formatted string.

Function name Description
rfmtdouble Converts a double to a string
rfmtlong Converts a long integer to a formatted string
risnull Checks whether a C variable is null
rsetnull Sets a C variable to null
rtypalign Aligns data on proper type boundaries
rtypmsize Gives byte size of SQL data types
rtypname Converts data type to string
rtypwidth Gives minimum conversion byte size
2-12

RISNULL
RISNULL

Purpose
The risnull function checks whether a C variable is null.

Syntax

int risnull(type, ptrvar)
int type;
char *ptrvar;

ptrvar is a pointer to the C variable.

type is an integer corresponding to the data type of a C variable.
(See “Defined Integers for Data Types” on page 2-5.)

Return Codes
1 The variable is null.

0 The variable is not null.
2-13

Return Codes
Example

/*
 * risnull.ec *
 This program prints rows from the order table where the paid_date is NULL.
*/

#include <stdio.h>

$include sqltypes;

char errmsg[400];

main()
{
 char ans;
 $long order_num, order_date, ship_date, paid_date;

 $database stores5; /* open stores5 database */
 err_chk("Open database");
 $declare c cursor for
 select order_num, order_date, ship_date, paid_date from orders;
 $open c;
 err_chk("Open cursor");
 printf("\n Order#\tPaid?\n"); /* print column hdgs */
 while(1)

{
$fetch c into $order_num, $order_date, $ship_date, $paid_date;
if (SQLCODE == SQLNOTFOUND) /* if end of rows */
 break; /* terminate loop */
err_chk("Fetch");
printf("%5d\t", order_num);
if (risnull(CDATETYPE, (char *)&paid_date)) /* is price NULL ? */
 printf("NO\n");
else
 printf("Yes\n");
}

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
 rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
 printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
 exit(1);
}

}

2-14

Example Output
Example Output

Order# Paid?
 1001 Yes
 1002 Yes
 1003 Yes
 1004 NO
 1005 Yes
 1006 NO
 1007 NO
 1008 Yes
 1009 Yes
 1010 Yes
 1011 Yes
 1012 NO
 1013 Yes
 1014 Yes
 1015 Yes
 1016 NO
 1017 NO
 1018 Yes
 1019 Yes
 1020 Yes
 1021 Yes
 1022 Yes
 1023 Yes
2-15

RSETNULL
RSETNULL

Purpose
The rsetnull function sets a C variable to a value that corresponds to a data-
base null value.

Syntax

int rsetnull(type, ptrvar)
int type;
char *ptrvar;

ptrvar is a pointer to the C variable.

type is an integer corresponding to the data type of a C variable.
(See “Defined Integers for Data Types” on page 2-5.)

Example

/*
 * rsetnull.ec *

 This program fetches rows from the stock table for a chosen manufacturer
 and allows the user to set the unit_price to NULL.
*/

#include <stdio.h>
#include <ctype.h>
#include <decimal.h>
$include sqltypes.h;

#define LCASE(c) (isalpha(c) ? (isupper(c) ? tolower(c) : c) : c)

char format[] = "($$,$$$,$$$.&&)";

char decdsply[20];
char errmsg[400];

$short stock_num;
$char description[16];
$dec_t unit_price;

main()
{
 $char manu_code[4];
 char ans;

 $database stores5; /* open stores5 database */
 err_chk("OPEN");
 $declare upcurs cursor for /* declare cursor */
2-16

Example
 select stock_num, description, unit_price from stock
 where manu_code = $manu_code
 for update of unit_price;
 printf("\n\tEnter Mfr. code: "); /* prompt for mfr. code */
 gets(manu_code); /* get mfr. code */
 rupshift(manu_code); /* Make mfr code upper case */
 $open upcurs; /* open select cursor */
 err_chk("Open upcurs cursor");
 /*
 Display Column Headings
 */
 printf("\nStock # \tDescription \tUnit Price");
 while(1)
 {
 /* get a row */
 $fetch upcurs into $stock_num, $description, $unit_price;
 if(!err_chk("FETCH")) /* check result */
 break;
 if(risnull(CDECIMALTYPE, &unit_price)) /* if unit_price IS NULL */
 continue; /* skip to next row */
 rfmtdec(&unit_price, format, decdsply); /* format unit_price */
 /* display item */
 printf("\n\t%d\t%15s\t%s", stock_num, description, decdsply);
 ans = ' ';
 /* Set unit_price to NULL? y(es) or n(o) */
 while((ans = LCASE(ans)) != 'y' && ans != 'n')
 {
 printf("\n\t. . . Set unit_price to NULL ? (y/n) ");
 scanf("%1s", &ans);
 }
 if(ans == 'y') /* if yes, NULL to unit_price */
 {
 rsetnull(CDECIMALTYPE, &unit_price);
 $update stock set unit_price = $unit_price
 where current of upcurs; /* and update current row */
 err_chk("UPDATE");
 }
 }
}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode < 0)
 {
 rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
 printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
 exit(1);
 }
 return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
}

2-17

Example Output
Example Output

 Enter Mfr. code: HRO

Stock # Description Unit Price
 1 baseball gloves $250.00
 . . . Set unit_price to NULL ? (y/n) n

 2 baseball $126.00
 . . . Set unit_price to NULL ? (y/n) y

 4 football $480.00
 . . . Set unit_price to NULL ? (y/n) n

 7 basketball $600.00
 . . . Set unit_price to NULL ? (y/n) y
2-18

RTYPALIGN
RTYPALIGN

Purpose
The rtypalign function returns the position of the next proper boundary for
a variable of the specified data type.

Syntax

int rtypalign(pos, type)
int pos;
int type;

pos is the current position in a buffer.

type is the integer code for a C or SQL data type. (See “Defined
Integers for Data Types” on page 2-5.)

Usage
The rtypalign and rtypmsize functions are useful when setting up an sqlda
structure to fetch data into a buffer; you can use the functions to provide
machine independence.

The value of type is returned by the DESCRIBE statement into
sqlda.sqlvar->sqltype.

You can see an application of the rtypalign function in the unload.ec demon-
stration program.

Return Code
>0 The offset of the next proper boundary for a variable of that

type.
2-19

Example
Example

/*
 * rtypalign.ec *

 The following program prepares a select on all columns from the orders
 table and then calculates the 'aligned' position in a buffer for each column.
*/

#include <decimal.h>

$include sqltypes;

char typnm[30], *rtypname();

char errmsg[400];

main()
{
 int i, pos;
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 $ database stores5; /* open stores5 database */
 err_chk("Open");
 $ prepare query_1 from "select * from orders"; /* prepare select */
 err_chk("Prepare");
 $ describe query_1 into sql_desc; /* initialize sqlda */
 err_chk("Describe");

 col = sql_desc->sqlvar;
 printf("\n\ttype\t\tlen\tnext\taligned\n"); /* display column hdgs. */
 printf("\t\t\t\tposn\tposn\n\n");
 /*

for each column in the orders table
 */
 i = 0;
 pos = 0;
 while(i++ < sql_desc->sqld)
 {
 /* Modify sqllen if SQL type is DECIMAL or MONEY */

if(col->sqltype == SQLDECIMAL || col->sqltype == SQLMONEY)
 {
 col->sqltype = CDECIMALTYPE; /* change to DECIMAL */
 col->sqllen = sizeof(dec_t);
 }
/*
 * display name of SQL type, length and un-aligned buffer position
 */
printf("\t%s\t\t%d\t%d", rtypname(col->sqltype), col->sqllen, pos);

pos = rtypalign(pos, col->sqltype); /* align pos. for type */
2-20

Example Output
printf("\t%d\n", pos);

pos += col->sqllen; /* set next position */
++col; /* bump to next column */
}

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

Example Output

type len next aligned
posn posn

serial 4 0 0
date 4 4 4
integer 4 8 8
char 40 12 12
char 1 52 52
char 10 53 53
date 4 63 64
byte 22 68 68
byte 22 90 90
date 4 112 112
2-21

RTYPMSIZE
RTYPMSIZE

Purpose
The rtypmsize function returns the number of bytes you must allocate in
memory for the specified C or SQL type.

Syntax

int rtypmsize(sqltype, sqllen)
int sqltype;
int sqllen;

sqllen is the number of bytes in the data file for the specified SQL
type.

sqltype is the integer code of the C or SQL type. (See “Defined Inte-
gers for Data Types” on page 2-5.)

Usage
The rtypmsize and rtypalign functions are useful when setting up an sqlda
to fetch data into a buffer; you can use the functions to provide machine inde-
pendence.

The rtypmsize function is designed to be used with the sqlda structure
returned by a DESCRIBE statement. The sqltype and sqllen components corre-
spond to the components of the same name in each sqlda.sqlvar structure.

For CCHARTYPE and CSTRINGTYPE, rtypmsize adds one byte to the number
of characters for the null terminator. For CFIXCHARTYPE, there is no null
terminator.

You can see an application of the rtypmsize function in the unload.ec dem-
onstration program.

Return Codes
0 The sqltype is not a valid SQL type.

>0 The number of bytes required for data type is n.
2-22

Example
Example

/*
 * rtypmsize.ec *

 The following program prepares a select statement on all columns of the
 catalog table and then displays the number of bytes needed to store each
 column in memory.
*/

#include <stdio.h>

$include sqltypes;

char errmsg[400];

main()
{
 int i;
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 $ database stores5; /* open stores5 database */
 err_chk("Open");
 $ prepare query_1 from "select * from catalog"; /* prepare select */
 err_chk("Prepare");
 $ describe query_1 into sql_desc; /* setup sqlda */
 err_chk("Describe");

 printf("\n\tColumn Type Size\n\n"); /* column hdgs. */
 /*
 * For each column in the catalog table display the column name and
 * the number of bytes needed to store the column in memory.
 */
 for(i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)

printf("\t%-20s%-8s%3d\n", col->sqlname, rtypname(col->sqltype),
rtypmsize(col->sqltype, col->sqllen));

}

/*
 * err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 * rgetmsg() to display the message for the error number in sqlca.sqlcode.
 */
err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

2-23

Example Output
Example Output

Column Type Size

catalog_num serial 4
stock_num smallint 2
manu_code char 4
cat_descr text 64
cat_picture byte 64
cat_advert varchar 256
2-24

RTYPNAME
RTYPNAME

Purpose
The rtypname function returns a null-terminated string containing the name
of the specified SQL type.

Syntax

char *rtypname(sqltype)
int sqltype;

sqltype is an integer code for one of the SQL types. (See “Defined
Integers for Data Types” on page 2-5.)

Return Codes
The following values are returned:

sqltype Return String
SQLCHAR "char"
SQLSMINT "smallint"
SQLINT "integer"
SQLFLOAT "float"
SQLSMFLOAT "smallfloat"
SQLDECIMAL "decimal"
SQLSERIAL "serial"
SQLDATE "date"
SQLMONEY "money"
SQLDTIME "datetime"
SQLINTERVAL "interval"
invalid type "" (null string)
2-25

Example
Example

/*
 * rtypname.ec *

 The following program displays name of the columns
 and the data type for each column for the 'orders' table.
*/

#include <stdio.h>

$include sqltypes;

char errmsg[400];

main()
{
 int i;
 char *rtypname();
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 $ database stores5; /* open stores5 database */
 err_chk("Open");
 $ prepare query_1 from "select * from orders"; /* prepare select */
 err_chk("Prepare");
 $ describe query_1 into sql_desc; /* initialize sqlda */
 err_chk("Describe");

 printf("\n\tColumn Name \t\tSQL type\n\n");
 /*
 * For each column in the orders table display the column name and
 * the name of the SQL data type
 */
 for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
 printf("\t%-15s\t\t%s\n", col->sqlname, rtypname(col->sqltype));
}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

2-26

Example Output
Example Output

Column Name SQL type

order_num serial
order_date date
customer_num integer
ship_instruct char
backlog char
po_num char
ship_date date
ship_weight decimal
ship_charge money
paid_date date
2-27

RTYPWIDTH
RTYPWIDTH

Purpose
The rtypwidth function returns the minimum number of characters required
to avoid truncation when converting a value with an SQL type to a character
data type.

Syntax

int rtypwidth(sqltype, sqllen)
int sqltype;
int sqllen;

sqllen is the number of bytes in the data file for the specified SQL
type.

sqltype is the integer code of the SQL type. (See “Defined Integers for
Data Types” on page 2-5.)

Usage
The rtypwidth function is designed to be used with the sqlda structure that
is returned by a DESCRIBE statement. The sqltype and sqllen components cor-
respond to the components of the same name in each sqlda.sqlvar structure.

Return Codes
0 The sqltype is not a valid SQL type.

> 0 A value of type sqltype requires a minimum of n characters to
be expressed.
2-28

Example
Example

/*
 * rtypwidth.ec *

 The following program displays the name of columns in 'orders' table and
 the number of characters required to store the data type for each column.
*/

#include <stdio.h>

char errmsg[400];

main()
{
 int i, numchars;
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 $ database stores5; /* open stores5 database */
 err_chk("Open");
 $ prepare query_1 from "select * from orders"; /* prepare select */
 err_chk("Prepare");
 $ describe query_1 into sql_desc; /* setup sqlda */
 err_chk("Describe");

 printf("\n\tColumn Name \t# chars\n");
 /*
 * For each column in orders print the column name and the minimum
 * number of characters required to convert the SQL type to a character
 * data type
 */
 for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)

{
numchars = rtypwidth(col->sqltype, col->sqllen);
printf("\t%-15s\t%d\n", col->sqlname, numchars);
}

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

2-29

Example Output
Example Output

Column Name # chars
order_num 11
order_date 10
customer_num 11
ship_instruct 40
backlog 1
po_num 10
ship_date 10
ship_weight 10
ship_charge 9
paid_date 10
2-30

Numeric-Formatting Routines
Numeric-Formatting Routines
You can use special run-time functions to format a numeric expression
according to a specific pattern. These formatting routines let you line up dec-
imal points, right or left justify numbers, enclose negative numbers in paren-
theses, and perform other formatting functions.

The following functions are included in the libraries for formatting numeric
expressions in INFORMIX-ESQL/C:

Function Name Description
rfmtdec Converts a decimal to a string
rfmtdouble Converts a double to a string
rfmtlong Converts a long integer to a string

The formatting routines for double and long values follow the description of
general formatting rules. The formatting routine for decimal values is
described in Chapter 4.

Formatting Numeric Strings
The numeric expression format string consists of combinations of the * & # <
, . - + () $ characters. The characters - + () $ float. When a character floats,
multiple leading occurrences of the character appear as a single character as
far to the right as possible, without interfering with the number that is being
displayed.

* This character fills with asterisks any positions in the display field
that would otherwise be blank.

& This character fills with zeros any positions in the display field that
would otherwise be blank.

This character does not change any blank positions in the display
field. Use this character to specify a maximum width for a field.

< This character causes the numbers in the display field to be left
justified.

, This character is a literal. It is displayed as a comma, but only if there
is a number to its left.

. This character is a literal that is displayed as a period. You can have
only one period in a format string.

- This character is a literal. It is displayed as a minus sign when expr1
is less than zero. When you group several in a row, a single minus
2-31

Formatting Numeric Strings
sign floats to the right-most position without interfering with the
number being printed.

+ This character is a literal. It is displayed as a plus sign when expr1 is
greater than or equal to zero and as a minus sign when expr1 is less
than zero. When you group several in a row, a single plus sign floats
to the right-most position without interfering with the number being
printed.

(This character is a literal. It is displayed as a left parenthesis before a
negative number. It is the accounting parenthesis that is used in place
of a minus sign to indicate a negative number. When you group sev-
eral in a row, a single left parenthesis floats to the right-most position
without interfering with the number being printed.

) This is the accounting parenthesis that is used in place of a minus
sign to indicate a negative number. A single one of these characters
generally closes a format string that begins with a left parenthesis.

$ This character is a literal. It is displayed as a dollar sign. When you
group several in a row, a single dollar sign floats to the right-most
position without interfering with the number being printed.

The following pages show example format strings for numeric expressions.
2-32

Example Format String
Example Format String

Format Numeric Formatted
String Value Result
"#####" 0 bbbbb
"&&&&&" 0 00000
"$$$$$" 0 bbbb$
"*****" 0 *****
"<<<<<" 0 (null string)

"##,###" 12345 12,345
"##,###" 1234 b1,234
"##,###" 123 bbb123
"##,###" 12 bbbb12
"##,###" 1 bbbbb1
"##,###" -1 bbbbb1
"##,###" 0 bbbbbb

"&&,&&&" 12345 12,345
"&&,&&&" 1234 01,234
"&&,&&&" 123 000123
"&&,&&&" 12 000012
"&&,&&&" 1 000001
"&&,&&&" -1 000001
"&&,&&&" 0 000000

"$$,$$$" 12345 ******
(overflow)

"$$,$$$" 1234 $1,234
"$$,$$$" 123 bb$123
"$$,$$$" 12 bbb$12
"$$,$$$" 1 bbbb$1
"$$,$$$" -1 bbbb$1
"$$,$$$" 0 bbbbb$

"**,***" 12345 12,345
"**,***" 1234 *1,234
"**,***" 123 ***123
"**,***" 12 ****12
"**,***" 1 *****1
"**,***" 0 ******

This table uses the character b to represent a blank or space.
2-33

Example Format String
Example Format String

Format Numeric Formatted
 String Value Result
"##,###.##" 12345.67 12,345.67
"##,###.##" 1234.56 b1,234.56
"##,###.##" 123.45 bbb123.45
"##,###.##" 12.34 bbbb12.34
"##,###.##" 1.23 bbbbb1.23
"##,###.##" 0.12 bbbbbb.12
"##,###.##" 0.01 bbbbbb.01
"##,###.##" -0.01 bbbbbb.01
"##,###.##" -1 bbbbb1.00

"&&,&&&.&&" .67 12,345.67
"&&,&&&.&&" 1234.56 01,234.56
"&&,&&&.&&" 123.45 000123.45
"&&,&&&.&&" 0.01 000000.01

"$$,$$$.$$" 12345.67 *********
(overflow)

"$$,$$$.$$" 1234.56 $1,234.56
"$$,$$$.##" 0.00 $.00
"$$,$$$.##" 1234.00 $1,234.00
"$$,$$$.&&" 0.00 $.00
"$$,$$$.&&" 1234.00 $1,234.00

"-##,###.##" -12345.67 -12,345.67
"-##,###.##" -123.45 -bbb123.45
"-##,###.##" -12.34 -bbbb12.34
"--#,###.##" -12.34 -bbb12.34
"---,###.##" -12.34 -bb12.34
"---,-##.##" -12.34 -12.34
"---,--#.##" -1.00 -1.00

"-##,###.##" 12345.67 12,345.67
"-##,###.##" 1234.56 1,234.56
"-##,###.##" 123.45 123.45
"-##,###.##" 12.34 12.34
"--#,###.##" 12.34 12.34
"---,###.##" 12.34 12.34
"---,-##.##" 12.34 12.34
"---,---.##" 1.00 1.00
"---,---.--" -.01 -.01
"---,---.&&" -.01 -.01

This table uses the character b to represent a blank or space.
2-34

Example Format String
Example Format String

Format Numeric Formatted
 String Value Result
"-$$$,$$$.&&" -12345.67 -$12,345.67
"-$$$,$$$.&&" -1234.56 -b$1,234.56
"-$$$,$$$.&&" -123.45 -bbb$123.45
"--$$,$$$.&&" -12345.67 -$12,345.67
"--$$,$$$.&&" -1234.56 -$1,234.56
"--$$,$$$.&&" -123.45 -bb$123.45
"--$$,$$$.&&" -12.34 -bbb$12.34
"--$$,$$$.&&" -1.23 -bbbb$1.23

"----,--$.&&" -12345.67 -$12,345.67
"----,--$.&&" -1234.56 -$1,234.56
"----,--$.&&" -123.45 -$123.45
"----,--$.&&" -12.34 -$12.34
"----,--$.&&" -1.23 -$1.23
"----,--$.&&" -.12 -$.12

"$***,***.&&" 12345.67 $*12,345.67
"$***,***.&&" 1234.56 $**1,234.56
"$***,***.&&" 123.45 $****123.45
"$***,***.&&" 12.34 $*****12.34
"$***,***.&&" 1.23 $******1.23
"$***,***.&&" .12 $*******.12

"($$$,$$$.&&)" -12345.67 ($12,345.67)
"($$$,$$$.&&)" -1234.56 (b$1,234.56)
"($$$,$$$.&&)" -123.45 (bbb$123.45)
"(($$,$$$.&&)" -12345.67 ($12,345.67)
"(($$,$$$.&&)" -1234.56 ($1,234.56)
"(($$,$$$.&&)" -123.45 (bb$123.45)
"(($$,$$$.&&)" -12.34 (bbb$12.34)
"(($$,$$$.&&)" -1.23 (bbbb$1.23)

"((((,(($.&&)" -12345.67 ($12,345.67)
"((((,(($.&&)" -1234.56 ($1,234.56)
"((((,(($.&&)" -123.45 ($123.45)
"((((,(($.&&)" -12.34 ($12.34)
"((((,(($.&&)" -1.23 ($1.23)
"((((,(($.&&)" -.12 ($.12)

This table uses the character b to represent a blank or space.
2-35

Example Format String
Example Format String

Format Numeric Formatted
String Value Result
"($$$,$$$.&&)" 12345.67 $12,345.67
"($$$,$$$.&&)" 1234.56 $1,234.56
"($$$,$$$.&&)" 123.45 $123.45
"(($$,$$$.&&)" 12345.67 $12,345.67
"(($$,$$$.&&)" 1234.56 $1,234.56
"(($$,$$$.&&)" 123.45 $123.45
"(($$,$$$.&&)" 12.34 $12.34
"(($$,$$$.&&)" 1.23 $1.23

"((((,(($.&&)" 12345.67 $12,345.67
"((((,(($.&&)" 1234.56 $1,234.56
"((((,(($.&&)" 123.45 $123.45
"((((,(($.&&)" 12.34 $12.34
"((((,(($.&&)" 1.23 $1.23
"((((,(($.&&)" .12 $.12

"<<<,<<<" 12345 12,345
"<<<,<<<" 1234 1,234
"<<<,<<<" 123 123
"<<<,<<<" 12 12
2-36

RFMTDOUBLE
RFMTDOUBLE

Purpose
The rfmtdouble function converts a double in internal format to a character
string formatted according to a pattern.

Syntax

int rfmtdouble(dvalue, format, outbuf)
double dvalue;
char *format;
char *outbuf;

dvalue is the number to be formatted.

format is the address of the formatted string.

outbuf is the address of the buffer to receive the format
string.

Return Codes
0 The conversion was successful.

-1211 The program ran out of memory—memory-allocation error.

-1217 The format string is too large.
2-37

Return Codes
Example

/*
 * rfmtdouble.ec *

 The following program applies a series of format specifications to a series
 of doubles and displays the result of each format.
*/

#include <stdio.h>

double dbls[] =
 {
 210203.204,
 4894,
 443.334899312,
 -12344455,
 0
 };

char *formats[] =
 {
 "#############",
 "<,<<<,<<<,<<<",
 "$$$$$$$$$$.##",
 "(&&,&&&,&&&.)",
 "$*********.**",
 0
 };

char result[40];

main()
{
 int x;
 int i = 0, f;

 while(dbls[i]) /* for each number in dbls */
{
f = 0;
while(formats[f]) /* format with each of formats[] */
 {
 if (x = rfmtdouble(dbls[i], formats[f], result))

{
printf("Error %d in formating %g using %s\n",

x, dbls[i], formats[f]);
break;
}

 /*
 * Display each result and bump to next format (f++)
 */
 printf("\n\t[%g] using format [%s]: %s",

dbls[i], formats[f], result);
 f++;
 }
++i; /* bump to next double */
printf("\n");/* separate result groups */
}

}

2-38

Example Output
Example Output

[210203] using format [#############]: 210203
[210203] using format [<,<<<,<<<,<<<]: 210,203
[210203] using format [$$$$$$$$$$.##]: $210203.20
[210203] using format [(&&,&&&,&&&.)]: 000210,203.
[210203] using format [$*********.**]: $***210203.20

[4894] using format [#############]: 4894
[4894] using format [<,<<<,<<<,<<<]: 4,894
[4894] using format [$$$$$$$$$$.##]: $4894.00
[4894] using format [(&&,&&&,&&&.)]: 000004,894.
[4894] using format [$*********.**]: $*****4894.00

[443.335] using format [#############]: 443
[443.335] using format [<,<<<,<<<,<<<]: 443
[443.335] using format [$$$$$$$$$$.##]: $443.33
[443.335] using format [(&&,&&&,&&&.)]: 0000000443.
[443.335] using format [$*********.**]: $******443.33

[-1.23445e+07] using format [#############]: 12344455
[-1.23445e+07] using format [<,<<<,<<<,<<<]: 12,344,455
[-1.23445e+07] using format [$$$$$$$$$$.##]: $12344455.00
[-1.23445e+07] using format [(&&,&&&,&&&.)]: (12,344,455.)
[-1.23445e+07] using format [$*********.**]: $*12344455.00
2-39

RFMTLONG
RFMTLONG

Purpose
The rfmtlong function converts a long in internal format to a character string
formatted according to a pattern.

Syntax

int rfmtlong(lvalue, format, outbuf)
long lvalue;
char *format;
char *outbuf;

format is the address of the formatted string.

lvalue is the number to be formatted.

outbuf is the address of the buffer to receive the format string.

Return Codes
0 The conversion was successful.

-1211 The program ran out of memory—memory-allocation error.

-1217 The format string is too large.
2-40

Return Codes
Example

/*
 * rfmtlong.ec *

 The following program applies a series of format specifications to a series
 of longs and displays the result of each format.
*/

#include <stdio.h>

long lngs[] =
 {
 21020304L,
 3334899312L,
 -3334899312L,
 -12344455L,
 0
 };

char *formats[] =
 {
 "################",
 "$$$$$$$$$$$$$.##",
 "(&,&&&,&&&,&&&.)",
 "<<<<,<<<,<<<,<<<",
 "$************.**",
 0
 };

char result[40];

main()
{
 int x;
 int s = 0, f;

 while(lngs[s]) /* for each long in lngs[] */
{
f = 0;
while(formats[f]) /* format with each of formats[] */
 {
 if (x = rfmtlong(lngs[s], formats[f], result))

{
printf("Error %d in formatting %ld using %s.\n",

x, lngs[s], formats[f]);
break;
}

 /*
 * Display result and bump to next format (f++)
 */
 printf("\n\t[%d] using format [%s]: %s",

lngs[s], formats[f], result);
 f++;
 }
++s; /* bump to next long */
printf("\n");/* separate display groups */
}

}

2-41

Example Output
Example Output

[21020304] using format [################]: 21020304
[21020304] using format [$$$$$$$$$$$$$.##]: $21020304.00
[21020304] using format [(&,&&&,&&&,&&&.)]: 00021,020,304.
[21020304] using format [<<<<,<<<,<<<,<<<]: 21,020,304
[21020304] using format [$************.**]: $****21020304.00

[-960067984] using format [################]: 960067984
[-960067984] using format [$$$$$$$$$$$$$.##]: $960067984.00
[-960067984] using format [(&,&&&,&&&,&&&.)]: (00960,067,984.)
[-960067984] using format [<<<<,<<<,<<<,<<<]: 960,067,984
[-960067984] using format [$************.**]: $***960067984.00

[960067984] using format [################]: 960067984
[960067984] using format [$$$$$$$$$$$$$.##]: $960067984.00
[960067984] using format [(&,&&&,&&&,&&&.)]: 00960,067,984.
[960067984] using format [<<<<,<<<,<<<,<<<]: 960,067,984
[960067984] using format [$************.**]: $***960067984.00

[-12344455] using format [################]: 12344455
[-12344455] using format [$$$$$$$$$$$$$.##]: $12344455.00
[-12344455] using format [(&,&&&,&&&,&&&.)]: (00012,344,455.)
[-12344455] using format [<<<<,<<<,<<<,<<<]: 12,344,455
[-12344455] using format [$************.**]: $****12344455.00
2-42

Chapter
3

Working with
Character and
String Data Types
Chapter Overview 3

Character and String Functions 4
BYCMPR 5
BYCOPY 7
BYFILL 9
BYLENG 11
LDCHAR 13
RDOWNSHIFT 15
RSTOD 16
RSTOI 18
RSTOL 20
RUPSHIFT 22
STCAT 23
STCHAR 25
STCMPR 27
STCOPY 29
STLENG 30

Programming with a VARCHAR Data Type 32
Declaring a Host Variable for a VARCHAR

Data Type 32
VARCHAR Macros 33

3-2

Chapter Overview
This chapter describes the Informix library functions for working with char-
acter data types and string data types that are included with ESQL/C. You can
use these functions in your C programs to manipulate characters and strings
of bytes and characters, including variable-length expressions. When you use
a compiler shell script (esql), these functions are linked automatically to your
program.

This chapter also tells you how to declare host variables for the VARCHAR
data type and how to use the macros that are available for working with
varchar data types.

For information about all of the data types available for use in an ESQL/C pro-
gram, see Chapter 2 of this manual. For information about SQL data types,
see Chapter 3 of The Informix Guide to SQL: Reference.
3-3

Character and String Functions
Character and String Functions
The following functions are contained in the Informix library. Those begin-
ning with by act on and return fixed-length strings of bytes. Those beginning
with rst and st (except stchar) operate on and return null-terminated strings.

Function name Description
bycmpr Compares two groups of contiguous bytes
bycopy Copies bytes from one area to another
byfill Fills the specified area with a character
byleng Counts the number of bytes in a string
ldchar Copies a fixed-length string to a null-terminated string
rdownshift Converts all letters to lowercase
rstod Converts a string to double
rstoi Converts a string to short
rstol Converts a string to long
rupshift Converts all letters to uppercase
stcat Concatenates one string to another
stchar Copies a null-terminated string to a fixed-length string
stcmpr Compares two strings
stcopy Copies one string to another string
stleng Counts the number of bytes in a string
3-4

BYCMPR
BYCMPR

Purpose
The bycmpr() function compares two groups of contiguous bytes for a given
length. It returns the result of the comparison as its value.

Syntax

int bycmpr(byte1, byte2, length)
char *byte1;
char *byte2;
int length;

byte1 is a pointer to the starting location of the first group of con-
tiguous bytes.

byte2 is a pointer to the starting location of the second group of
contiguous bytes.

length is the number of bytes to be compared.

Usage
The bycmpr() function performs a byte-by-byte comparison of the two
groups of contiguous bytes until a difference is found or length number of
bytes have been compared. It returns an integer whose value, relative to 0
(zero), indicates the difference in value between the two groups of bytes.

The bycmpr() function accomplishes the comparison by subtracting the bytes
of the byte2 group from those of the byte1 group.

Return Codes
=0 The two groups are identical.

<0 The byte1 group < byte2 group.

>0 The byte1 group > byte2 group.
3-5

Example
Example

/*
 * bycmpr.ec *

 The following program performs four different byte comparisons with
 bycmpr() and displays the results.
*/

#include <stdio.h>

main()
{
 int x;

 static char string1[] = "abcdef";
 static char string2[] = "abcdeg";

 static int number1 = 12345;
 static int number2 = 12367;

 static char string3[] = {0x00, 0x07, 0x45, 0x32, 0x00};
 static char string4[] = {0x00, 0x07, 0x45, 0x31, 0x00};

/* strings */
 x = bycmpr(string1, string2, sizeof(string1));
 printf("\tResult #1: %d\n", x);

/* ints */
 x = bycmpr(&number1, &number2, sizeof(number1));
 printf("\tResult #2: %d\n", x);

/* non printable */
 x = bycmpr(string3, string4, sizeof(string3));
 printf("\tResult #3: %d\n", x);

 x = bycmpr(&string1[2], &string2[2], 2);/* bytes */
 printf("\tResult #4: %d\n", x);
}

Example Output

Result #1: -1
Result #2: -1
Result #3: 1
Result #4: 0
3-6

BYCOPY
BYCOPY

Purpose
The bycopy() function copies a given number of bytes from one location to
another.

Syntax

void bycopy(from, to, length)
char *from;
char *to;
int length;

from is a pointer to the starting byte of the group of bytes to be
copied.

length is the number of bytes to be copied.

to is a pointer to the starting byte of the destination group of
bytes.

Note: Take care not to overwrite areas of memory adjacent to the destination area.
3-7

Example
Example

/*
 * bycopy.ec *

 The following program shows the results of bycopy() for three copy
 operations.
*/

#include <stdio.h>

char dest[20];

main()
{
 int number1 = 12345;
 int number2 = 0;
 static char string1[] = "abcdef";
 static char string2[] = "abcdefghijklmn";

 bycopy(string1, dest, strlen(string1));
 printf("\tResult #1: %s\n", dest);

 bycopy(string2, dest, strlen(string2));
 printf("\tResult #2: %s\n", dest);

 bycopy(&number1, &number2, 3);
 printf("\tResult #3: number1(hex) %08x, number2(hex) %08x\n",

 number1, number2);
}

Example Output

Result #1: abcdef
Result #2: abcdefghijklmn
Result #3: number1(hex) 00003039, number2(hex) 00003000
3-8

BYFILL
BYFILL

Purpose
The byfill() function fills a specified area with one character.

Syntax

void byfill(to, length, ch)
char *to;
int length;
char ch;

ch is the character that fills the area.

length is the number of times the character is repeated within the
area.

to is the starting byte of the memory area to be filled.

Note: Take care not to overwrite areas of memory adjacent to the area to be filled.

Example

/*
 * byfill.ec *

 The following program shows the results of three byfill() operations on an
 area that is initialized to x's.
*/

#include <stdio.h>

main()
{
 static char area[20] = "xxxxxxxxxxxxxxxxxxx";

 byfill(area, 5, 's');
 printf("\tResult #1: %s\n", area);

 byfill(&area[16], 2, 's');
 printf("\tResult #2: %s\n", area);

 byfill(area, sizeof(area)-1, 'b');
 printf("\tResult #3: %s\n", area);
}

3-9

Example Output
Example Output

Result #1: sssssxxxxxxxxxxxxxx
Result #2: sssssxxxxxxxxxxxssx
Result #3: bbbbbbbbbbbbbbbbbbb
3-10

BYLENG
BYLENG

Purpose
The byleng() function returns the number of significant characters in a string,
not counting trailing blanks.

Syntax

int byleng(from, count)
char *from;
int count;

count is the number of bytes in the fixed-length string.

from is a pointer to a fixed-length string (not null-terminated).

Example

/*
 * byleng.ec *

 The following program uses byleng() to count the significant characters in
 an area.
*/

#include <stdio.h>

main()
{
 int x;
 static char area[20] = "xxxxxxxxxx ";

 x = byleng(area, 15);/* initial length */
 printf("\tResult #1: %d, area: '%s'\n", x, area);

 bycopy("ss", &area[16], 2);
 x = byleng(area, 19);/* after copy */
 printf("\tResult #2: %d, area: '%s'\n", x, area);
}

3-11

Example Output
Example Output

Result #1: 10, area: 'xxxxxxxxxx '
Result #2: 18, area: 'xxxxxxxxxx ss '
3-12

LDCHAR
LDCHAR

Purpose
The ldchar() function copies a fixed-length string into a null-terminated
string with any trailing blanks removed.

Syntax

void ldchar(from, count, to)
char *from;
int count;
char *to;

count is the number of bytes in the fixed-length source string.

from is a pointer to the fixed-length source string.

to is a pointer to the first byte of a null-terminated destination
string.

Example

/*
 * ldchar.ec *

 The following program loads characters to specific locations in an array
 that is initialized to z's. It displays the result of each ldchar()
 operation.
*/

#include <stdio.h>

main()
{
 static char src1[] = "abcd ";
 static char src2[] = "abcd g ";
 static char dest[40];

 ldchar(src1, stleng(src1), dest);
 printf("\tSource: [%s]\n\tDest : [%s]\n\n", src1, dest);

 ldchar(src2, stleng(src2), dest);
 printf("\tSource: [%s]\n\tDest : [%s]\n\n", src2, dest);
}

3-13

Example Output
Example Output

Source: [abcd]
Dest : [abcd]

Source: [abcd g]
Dest : [abcd g]
3-14

RDOWNSHIFT
RDOWNSHIFT

Purpose
The rdownshift() function changes all of the characters within a null-
terminated string to lowercase.

Syntax

void rdownshift(s)
char *s;

s is a pointer to a null-terminated string.

Example

/*
 * rdownshift.ec *

 The following program uses rdownshift() on a string containing alpha,
 numeric and punctuation characters.
*/

#include <stdio.h>

main()
{
 static char string[] = "123ABCDEFGHIJK'.;";

 printf("\tInput string...: [%s]\n", string);
 rdownshift(string);
 printf("\tAfter downshift: [%s]\n", string);
}

Example Output

Input string...: [123ABCDEFGHIJK'.;]
After downshift: [123abcdefghijk'.;]
3-15

RSTOD
RSTOD

Purpose
The rstod() function converts a null-terminated string into a double.

Syntax

int rstod(string, double_val)
char *string;
double *double_val;

double_val is a pointer to a double where the result of the function is
held.

string is a pointer to a null-terminated string.

Return Codes
=0 The conversion was successful.

!=0 The conversion failed.
3-16

Example Output
Example

/*
 * rstod.ec *

 The following program tries to convert three strings to doubles.
 It displays the result of each attempt.
*/

#include <stdio.h>

main()
{
 int errnum;
 char *string1 = "1234567887654321";
 char *string2 = "12345678.87654321";
 char *string3 = "zzzzzzzzzzzzzzzz";
 double d;

 if ((errnum = rstod(string1, &d)) == 0)
printf("\n\tResult #1: %f", d);

 else
printf("\n\tError %d in conversion\n", errnum);

 if ((errnum = rstod(string2, &d)) == 0)
printf("\n\tResult #2: %.8f", d);

 else
printf("\n\tError %d in conversion\n", errnum);

 if ((errnum = rstod(string3, &d)) == 0)
printf("\n\tResult #3: %.8f\n", d);

 else
printf("\n\tError %d in conversion of string #3\n", errnum);

}

Example Output

Result #1: 1234567887654321.000000
Result #2: 12345678.87654321
Error -1213 in conversion of string #3
3-17

RSTOI
RSTOI

Purpose
The rstoi() function converts a null-terminated string into an integer.

Syntax

int rstoi(string, ival)
char *string;
int *ival;

ival is a pointer to an integer where the result of the function is
held.

string is a pointer to a null-terminated string.

Usage
The legal range of values is from -32767 to 32767.

If string corresponds to a null integer, ival points to the representation for a
SMALLINT NULL. If you want to convert a string that corresponds to a long
integer, use rstol. Failure to do so can result in corrupt data representation.

Return Codes
=0 The conversion was successful.

!=0 The conversion failed.
3-18

Example Output
Example

/*
 * rstoi.ec *

 The following program tries to convert three strings to integers.
 It displays the result of each conversion.
*/

#include <stdio.h>

$include sqltypes;

main()
{
 int err;
 int i;
 short s;

 i = 0;
 if((err = rstoi("abc", &i)) == 0)

printf("\n\tResult #1: %d", i);
 else

printf("\n\tError %d in conversion of string #1\n", err);

 i = 0;
 if((err = rstoi("32766", &i)) == 0)

printf("\n\tResult #2: %d", i);
 else

printf("\n\tError %d in conversion of string #2\n", err);

 i = 0;
 if((err = rstoi("", &i)) == 0)

{
s = i; /* assign to a SHORT variable */
if (risnull(CSHORTTYPE, (char *) &s))/* and then test for NULL */
 printf("\n\tResult #3 is NULL\n");
else
 printf("\n\tResult #3: %d\n", i);
}

 else
printf("\n\tError %d in conversion of string #3\n", err);

}

Example Output

Error -1213 in conversion of string #1

Result #2: 32766
Result #3 is NULL
3-19

RSTOL
RSTOL

Purpose
The rstol() function converts a null-terminated string into a long integer.

Syntax

int rstol(string, long_int)
char *string;
long *long_int;

long_int is a pointer to a long integer where the result of the function
is held.

string is a pointer to a null-terminated string.

Usage
The legal range of values is from -2,147,483,647 to 2,147,483,647.

Return Codes
=0 The conversion was successful.

!=0 The conversion failed.
3-20

Example Output
Example

/*
 * rstol.ec *

 The following program tries to convert three strings to longs. It
 displays the result of each attempt.
*/

#include <stdio.h>

$include sqltypes;

main()
{
 int err;
 long l;

 l = 0;
 if((err = rstol("abc", &l)) == 0)

printf("\n\tResult #1: %ld", l);
 else

printf("\n\tError %d in conversion of string #1\n", err);

 l = 0;
 if((err = rstol("2147483646", &l)) == 0)

printf("\n\tResult #2: %ld", l);
 else

printf("\n\tError %d in conversion of string #2\n", err);

 l = 0;
 if((err = rstol("", &l)) == 0)
 {

if(risnull(CLONGTYPE, (char *) &l))
 printf("\n\tResult #3: NULL\n", l);
else
 printf("\n\tResult #3: %ld\n", l);

 }
 else

printf("\n\tError %d in conversion of string #3\n", err);
}

Example Output

Error -1213 in conversion of string #1

Result #2: 2147483646
Result #3: NULL
3-21

RUPSHIFT
RUPSHIFT

Purpose
The rupshift() function changes all of the characters within a null-terminated
string to uppercase.

Syntax

void rupshift(s)
char *s;

s is a pointer to a null-terminated string.

Example

/*
 * rupshift.ec *

 The following program displays the result of rupshift() on a string
 of numbers, letters and punctuation.
*/

#include <stdio.h>

main()
{
 static char string[] = "123abcdefghijkl;.";

 printf("\tInput string: %s\n", string);
 rupshift(string);
 printf("\tAfter upshift: %s\n", string); /* Result */
}

Example Output

Input string: 123abcdefghijkl;.
After upshift: 123ABCDEFGHIJKL;.
3-22

STCAT
STCAT

Purpose
The stcat() function concatenates one null-terminated string to the end of
another.

Syntax

void stcat(s, dest)
char *s, *dest;

dest is a pointer to the start of the null-terminated destination
string.

s is a pointer to the start of the string that is placed at the end
of the destination string.

Example

/*
 * stcat.ec *

 The following program illustrates the use of stcat() function.
 It prepares and executes a dynamic select statement,
 using a value entered from the termial.
*/

#include <stdio.h>

/*
 * Declare a variable large enough to hold
 * the select statement + the value for customer_num entered from the terminal.
 */
$char selstmt[80] = "select fname, lname from customer where customer_num = ";

char errmsg[400];

main()
{
 $char fname[16], lname[16];
 char custno[11];

 printf("\n\tEnter Customer#: ");
 gets(custno);

 /*
 * Add custno to "select statement"
 */
 stcat(custno, selstmt);
3-23

Example Output
 $database stores5;
 err_chk("Open database");

 $prepare stmt_1 from $selstmt;
 err_chk("Prepare");

 $declare c cursor for stmt_1;
 err_chk("Declare cursor");

 $open c;
 err_chk("Open cursor");

 $fetch c into :fname, :lname;
 if (SQLCODE == SQLNOTFOUND)

printf("\n\tCustomer# %s does not exist in customer table\n", custno);
 else

{
err_chk("Fetch");
printf("Customer#: %s is '%s %s'\n", custno, fname, lname);
}

 $close c;
 err_chk("Close cursor");

 $close database;
 err_chk("Close database");
}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

Example Output

 Enter Customer#: 104
Customer#: 104 is 'Anthony Higgins
3-24

STCHAR
STCHAR

Purpose
The stchar() function stores a null-terminated string in a fixed-length string,
padding the end with blanks, if necessary.

Syntax

void stchar(from, to, count)
char *from;
char *to;
int count;

count is the number of bytes in the fixed-length destination string.

from is a pointer to the first byte of a null-terminated source
string.

to is a pointer to the fixed-length destination string.

Example

/*
 * stchar.ec *

 The following program shows the blank padded result produced by
 stchar() function.
*/

#include <stdio.h>

main()
{
 static char src[] = "start";
 static char dst[25] = "123abcdefghijkl;.";

 printf("Source string: [%s]\n", src);
 printf("Destination string before stchar: [%s]\n", dst);

 stchar(src, dst, sizeof(dst) - 1);

 printf("Destination string after stchar: [%s]\n", dst);
}

3-25

Example Output
Example Output

Source string: [start]
Destination string before stchar: [123abcdefghijkl;.]
Destination string after stchar: [start]
3-26

STCMPR
STCMPR

Purpose
The stcmpr() function compares two null-terminated strings.

Syntax

int stcmpr(s1, s2)
char *s1, *s2;

 s1 is a pointer to the first null-terminated string.

s2 is a pointer to the second null-terminated string.

Note: s1 is greater than s2 when s1 appears after s2 in the ASCII collating sequence.

Return Codes
=0 The two strings are identical.

<0 The first string is less than the second string.

>0 The first string is greater than the second string.

Example

/*
 * stcmpr.ec *

 The following program displays the results of stcmpr() on three string
 comparisons.
*/

#include <stdio.h>

main()
{
 printf("\n\tResult #1: %d", stcmpr("aaa", "aaa")); /* equal */
 printf("\n\tResult #2: %d", stcmpr("aaa", "aaaa")); /* less */
 printf("\n\tResult #3: %d\n", stcmpr("bbb", "aaaa")); /* greater */
}

3-27

Example Output
Example Output

Result #1: 0
Result #2: -1
Result #3: 1
3-28

STCOPY
STCOPY

Purpose
The stcopy() function copies a null-terminated string from one location in
memory to another location.

Syntax

void stcopy(from, to)
char *from, *to;

from is a pointer to the null-terminated string to be copied.

to is a pointer to a location in memory where the string is
copied.

Example

/*
 * stcopy.ec *

 The program copies "John Doe" to an address and displays the result.
*/

#include <stdio.h>

main()
{
 static char string[] = "abcdefghijklmnopqrstuvwxyz";

 printf("\n\tstring: [%s]", string);/* display dest */
 stcopy("John Doe", &string[15]);/* copy */
 printf("\n\tstring: %s\n", string); /* display string */
}

Example Output

string: [abcdefghijklmnopqrstuvwxyz]
string: abcdefghijklmnoJohn Doe
3-29

STLENG
STLENG

Purpose
The stleng() function returns the length, in bytes, of a specified null-
terminated string.

Syntax

int stleng(string)
char *string;

string is a pointer to a null-terminated string.

Usage
The length does not include the terminating null.

Example

/*
 * stleng.ec *

 The following program uses stleng to display cat_advert from the catalog
 table where cat_advert is less than 35 characters.
*/

#include <stdio.h>

char errmsg[400];

$varchar cat_advert[256];
$long cat_num;

main()
{
 int length;

 printf("\nPrinting advertisement text less than 35 characters long\n");

 $database stores5;/* open the stores5 database */
 err_chk("Open database");

 $declare curs cursor for /* setup cursor for select */
select catalog_num, cat_advert from catalog;

 err_chk("Declare cursor");

 $open curs;
 err_chk("Open cursor");
3-30

Example Output
 while(getrow())
{
if ((length = stleng(cat_advert)) < 35)
 printf("\n\tAdvertisement for %ld (%d bytes):\n\t'%s'\n",

cat_num, length, cat_advert);
}

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

}

/* fetch the next row for selected items */

getrow()
{
 $fetch curs into $cat_num, $cat_advert;
 if (SQLCODE == SQLNOTFOUND)

return(0);
 err_chk("FETCH");
 return(1);
}

Example Output

Printing advertisement text less than 35 characters long

Advertisement for 10001 (34 bytes):
'Your First Season's Baseball Glove'

Advertisement for 10025 (31 bytes):
'ProCycle Stem with Pearl Finish'

Advertisement for 10047 (28 bytes):
'Long Drive Golf Balls: White'

Advertisement for 10058 (29 bytes):
'Athletic Watch w/4-Lap Memory'

Advertisement for 10068 (22 bytes):
'High-Quality Kickboard'

Advertisement for 10072 (27 bytes):
'Team Logo Silicone Swim Cap'
3-31

Programming with a VARCHAR Data Type
Programming with a VARCHAR Data Type
This section covers the following topics:

• Declaring host variables for VARCHAR data types
• Using the VARCHAR macros

See Chapter 2 of this manual for a description of the VARCHAR data type
and information on data type conversion.

Declaring a Host Variable for a VARCHAR Data Type
Use the following syntax to declare a host variable for a VARCHAR data type:

$varchar host_name[n];

host_name is an identifier, the name of the variable.

n specifies the maximum length of the variable. It should be
the max-size from the column declaration plus one to account
for the null terminator in the array.

varchar specifies the data type.

To conform to ANSI standards, use the EXEC SQL BEGIN DECLARE SECTION
and EXEC SQL END DECLARE SECTION statements instead of the dollar sign
($). For example:

EXEC SQL BEGIN DECLARE SECTION
varchar host_name[n];

EXEC SQL END DECLARE SECTION

INFORMIX-ESQL/C represents a VARCHAR value in storage as an array of
characters. If the contents of a varchar host variable are stored in a table, the
data is not padded with extra blanks. If the array contains explicit trailing
blanks, they are retained when the value is stored in the database.

Alternatively, you can use the following syntax to declare a host variable for
a VARCHAR data type:

$string host_name[n];
3-32

VARCHAR Macros
If you declare a host variable of type string, it is also an array of characters.
However, unlike values that are read into host variables declared as type
varchar, if the column contains explicit (user-entered) trailing blanks, the
blanks are stripped when the value is read into the string host variable.

If you read values from a VARCHAR database column into a char or fixchar
host variable, user-entered spaces are retained as they are with the varchar
host variable.

When you read a value from any type of host variable into a VARCHAR data-
base column, all user-entered blanks are retained.

VARCHAR Macros
VARCHAR macros in the varchar.h include file allow you to use encoded size
information about a varchar. The size information is stored in the LENGTH
field of the system descriptor area (or the sqllen field of an sqlda structure)
after a describe. The size information for a VARCHAR column is stored in the
syscolumns system catalog table. The names of the macros and their use are
as follows:

VCLENGTH(size) Determines how large to make the host array for a
VARCHAR data type.

VCMIN(size) Determines the minimum length of a VARCHAR data
type from the encoded value in the syscolumns system
catalog table.

VCMAX(size) Determines the maximum length of a VARCHAR data
type from the encoded value in the syscolumns system
catalog table.

VCSIZ(max, min) Encodes the maximum and minimum sizes.

The macros are defined as follows:

#define VCLENGTH(len) (VCMAX(len)+1)
#define VCMIN(size) (((size) >> 8) & 0x00ff)
#define VCMAX(size) ((size) & 0x00ff)
#define VCSIZ(max, min) ((((min) << 8) & 0xff00) + ((max) & 0x00ff))

The following example obtains collength from the syscolumns system cata-
log table for the cat_advert column. It then uses the macros from varchar.h to
display the maximum size (VCMAX), the minimum size (VCMIN), the host
variable length(VCLENGTH), and the encoded value of the combined maxi-
mum size and minimum size (VCSIZ) for cat_advert.
3-33

Example
Example

$include varchar.h;

$int vc_size;
int vc_code;
int max, min;
int hv_length;

char errmsg[512];

main()
{
 $database stores5;
 err_chk("database");
 $select collength into $vc_size from syscolumns
 where colname = "cat_advert";
 err_chk("select");

 max = VCMAX(vc_size);
 printf("\n\tmax: %d", max);

 min = VCMIN(vc_size);
 printf("\n\tmin: %d", min);

 hv_length = VCLENGTH(vc_size);
 printf("\n\thv_length: %d", hv_length);

 vc_code = VCSIZ(max, min);
 printf("\n\tvc_code: %d\n", vc_code);
}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode < 0)
 {
 rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
 printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
 exit(1);
 }
 return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
}

Example Output

max: 255
 min: 65
 hv_length: 256
 vc_code: 16895
3-34

Chapter
4

Working with the
DECIMAL Data
Type
Chapter Overview 3

The DECIMAL Data Type 3
Decimal Type Functions 5
DECCVASC 6
DECTOASC 9
DECCVINT 12
DECTOINT 14
DECCVLONG 16
DECTOLONG 18
DECCVDBL 20
DECTODBL 22
DECADD, DECSUB, DECMUL, and DECDIV 25
DECCMP 31
DECCOPY 33
DECECVT and DECFCVT 35
DECROUND 41
DECTRUNC 43
RFMTDEC 45

4-2

Chapter Overview
This chapter contains the following information on how to use DECIMAL data
type values in an INFORMIX-ESQL/C program:

• An overview of the DECIMAL data type

• A sample program that uses the DECIMAL data type functions

• The syntax for functions that you can use to manipulate DECIMAL data
types.

For information about all of the data types available for use in an ESQL/C pro-
gram, see Chapter 2 of this manual. For information about SQL data types,
see Chapter 3 of The Informix Guide to SQL: Reference.

The DECIMAL Data Type
The DECIMAL data type is a machine-independent method for representing
numbers of up to 32 significant digits, with or without a decimal point, and
with exponents in the range -128 to +126.

INFORMIX-ESQL/C provides routines that facilitate conversion of DECIMAL
data type numbers to and from every data type allowed in the C language.

When you define a column as having the DECIMAL(m,n) data type, it has a
total of m (<= 32) significant digits (the precision) and n (<= m) digits to the
right of the decimal point (the scale). For a complete description of the
DECIMAL data type, see Chapter 3 of The Informix Guide to SQL: Reference.
4-3

The DECIMAL Data Type
When used within a program, DECIMAL type numbers are stored in a C struc-
ture of the following type:

#define DECSIZE 16

struct decimal
{

short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];

};

typedef struct decimal dec_t;

The decimal structure and the typedef dec_t are found in the decimal.h
header file. Include this file in all C source files that use any of the decimal
functions:

#include <decimal.h>

The decimal structure has four parts:

dec_exp holds the exponent of the normalized decimal type
number. This exponent represents a power of 100.

dec_pos holds the sign of the decimal type number (1 when
the number is zero or greater; 0 when the number is
less than zero).

dec_ndgts contains the number of base 100 significant digits of
the decimal type number.

dec_dgts is a character array that holds the significant digits of
the normalized decimal type number, which is
dec_dgts[0] != 0. Each character in the array is a one-
byte binary number in base 100. The dec_ndgts array
contains the number of significant digits in dec_dgts.

All operations on decimal type numbers take place through the functions
provided in ESQL/C and are described in the following section. Any other
operations, modifications, or analyses can produce unpredictable results.
4-4

Decimal Type Functions
Decimal Type Functions
The following C function calls are available in INFORMIX-ESQL/C to treat
DECIMAL data type numbers:

Function name Description
deccvasc Converts C char type values to decimal type values
dectoasc Converts decimal type values to C char type values
deccvint Converts C int type values to decimal type values
dectoint Converts decimal type values to C int type values
deccvlong Converts C long type values to decimal type values
dectolong Converts decimal type values to C long type values
deccvdbl Converts C double type values to decimal type values
dectodbl Converts decimal type values to C double type values
decadd Adds two decimal numbers
decsub Subtracts two decimal numbers
decmul Multiplies two decimal numbers
decdiv Divides two decimal numbers
deccmp Compares two decimal numbers
deccopy Copies a decimal number
dececvt Converts a DECIMAL value to an ASCII string
decfcvt Converts a DECIMAL value to an ASCII string
decround Rounds a decimal number
dectrunc Truncates a decimal number
rfmtdec Converts a decimal type value to a formatted character

string.

The syntax of each of these functions is described in the remainder of this
chapter.
4-5

DECCVASC
DECCVASC

Purpose
The deccvasc function converts a value held as printable characters in a C
char type into a decimal type number.

Syntax

int deccvasc(cp, len, np)
char *cp;
int len;
dec_t *np;

cp is a pointer to a string that holds the value to be converted.

len is the length of the string.

np is a pointer to the decimal structure where the result of the
conversion is placed.

Usage
Leading spaces in the character string are ignored.

The character string can have a leading sign, either a plus (+) or minus (-), a
decimal point, and digits to the right of the decimal point.

The character string can contain an exponent preceded by either e or E. The
exponent can be preceded by a sign, either a plus (+) or minus (-).

Return Codes
0 The conversion was successful.
-1200 The number is too large to fit into a decimal type (overflow).
-1201 The number is too small to fit into a decimal type

(underflow).
-1213 The string has non-numeric characters.
-1216 The string has a bad exponent.
4-6

Example
Example

/*
 * deccvasc.ec *

 The following program converts two strings to decimal numbers and displays
 the values stored in each field of the decimal structures.
*/

#include <stdio.h>

$include decimal;

char string1[] = "-12345.6789";
char string2[] = "480";

main()
{
 int x;
 dec_t num1, num2;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 /*
 * Display the exponent, sign value and number of digits in num1.
 */
 printf("\tstring1: %s\n", string1);
 disp_dec("num1", &num1);

 /*
 * Display the exponent, sign value and number of digits in num2.
 */
 printf("\tstring2: %s\n", string2);
 disp_dec("num2", &num2);
 exit(0);
}

disp_dec(s, num)
dec_t *num;
{
 int n;

 printf("\t%s: dec_exp: %d, dec_pos: %d, dec_ndgts: %d, dec_dgts: ",
s, num->dec_exp, num->dec_pos, num->dec_ndgts);

 n = 0;
 while(n < num->dec_ndgts)

printf("%02d ", num->dec_dgts[n++]);
 printf("\n\n");
}

4-7

Example Output
Example Output

string1: -12345.6789
num1: dec_exp: 3, dec_pos: 0, dec_ndgts: 5, dec_dgts: 01 23 45 67 89

string2: 480
num2: dec_exp: 2, dec_pos: 1, dec_ndgts: 2, dec_dgts: 04 80
4-8

DECTOASC
DECTOASC

Purpose
The dectoasc function converts a decimal type number to an ASCII string.

Syntax

int dectoasc(np, cp, len, right)
dec_t *np;
char *cp;
int len;
int right;

cp is a pointer to the beginning of the character buffer to hold
the ASCII string.

len is the maximum length in bytes of the string buffer.

np is a pointer to the decimal structure whose associated deci-
mal value is converted into an ASCII string.

right is an integer indicating the number of decimal places to the
right of the decimal point.

Usage
If right = -1, the number of decimal places is determined by the decimal value
of *np.

If the number does not fit into a character string of length len, dectoasc con-
verts the number to an exponential notation. If the number still does not fit,
the string is filled with asterisks. If the number is shorter than the string, it is
left justified and padded on the right with blanks.

Because the ASCII string returned by dectoasc is not null-terminated, your
program must add a null character to the string before printing it.

Return Codes
0 The conversion was successful.

-1 The conversion failed.
4-9

Example
Example

/*
/*
 * dectoasc.ec *

 The following program converts decimal numbers to strings of varying sizes.
*/

#include <stdio.h>

$include decimal;

#define END sizeof(result)

char string1[] = "-12345.038782";
char string2[] = "480";
char result[40];

main()
{
 int x;
 dec_t num1, num2;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num1, result, 5, -1))
printf("Error %d in converting decimal1 to string\n", x);

 else
{
result[5] = '\0';/* null terminate */
printf("\tResult #1: '%s'\n", result);
}

 if (x = dectoasc(&num1, result, 10, -1))
printf("Error %d in converting decimal1 to string\n", x);

 else
{
result[10] = '\0';/* null terminate */
printf("\tResult #2: '%s'\n", result);
}

 if (x = dectoasc(&num2, result, END, 3))
printf("Error %d in converting decimal2 to string\n", x);

 else
{
result[END-1] = '\0';/* null terminate */
printf("\tResult #3: '%s'\n", result);
}

}

4-10

Example Output
Example Output

Error -1 in converting decimal1 to string
Result #2: '-12345.039'
Result #3: '480.000 '
4-11

DECCVINT
DECCVINT

Purpose
The deccvint function converts a C type int into a decimal type number.

Syntax

int deccvint(integer, np)
int integer;
dec_t *np;

integer is the integer to be converted.

np is a pointer to a decimal structure where the result is placed.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
4-12

Example Output
Example

/*
 * deccvint.ec *

 The following program converts two integers to decimal numbers and displays
 the results.
*/

#include <stdio.h>

$include decimal;

char result[40];

main()
{
 int x;
 dec_t num;

 if (x = deccvint(129449233, &num))
{
printf("Error %d in converting int1 to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal to string\n", x);
exit(1);
}

 printf("\tResult #1: %s\n", result);

 if (x = deccvint(33, &num))
{
printf("Error %d in converting int2 to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal to string\n", x);
exit(1);
}

 printf("\tResult #2: %s\n", result);
 exit(0);
}

Example Output

Result #1: 129449233.0
Result #2: 33.0
4-13

DECTOINT
DECTOINT

Purpose
The dectoint function converts a decimal type number into a C type int.

Syntax

int dectoint(np, ip)
dec_t *np;
int *ip;

ip is a pointer to the integer.

np is a pointer to a decimal structure whose value is converted
to an integer.

Return Codes
0 The conversion was successful.

<0 The conversion failed.

-1200 The magnitude of the decimal type number > 32767.
4-14

Example Output
Example

/*
 * dectoint.ec *

 The following program converts two decimal numbers to ints and displays
 the result of each conversion.
*/

#include <stdio.h>

$include decimal;

char string1 [] = "32767";
char string2 [] = "32768";

main()
{
 int x;
 int n = 0;
 dec_t num;

 if (x = deccvasc(string1,strlen(string1), &num))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = dectoint(&num, &n))
{
printf("Error %d in converting decimal to int\n", x);
exit(1);
}

 printf("\tResult #1: %d\n", n);

 if (x = deccvasc(string2, strlen(string2), &num))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = dectoint(&num, &n))
{
printf("Error %d in converting decimal to int\n", x);
exit(1);
}

 printf("\tResult #2: %d\n", n);
 exit(0);
}

Example Output

Result #1: 32767
Error -1200 in converting decimal to int
4-15

DECCVLONG
DECCVLONG

Purpose
The deccvlong function converts a C type long value into a decimal type
number.

Syntax

int deccvlong(lng, np)
long lng;
dec_t *np;

lng is the long value that is converted into a decimal type value.

np is a pointer to a decimal structure that holds the decimal
type number.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
4-16

Example Output
Example

/*
 * deccvlong.ec *

 The following program converts two longs to decimal numbers and displays
 the results.
*/

#include <stdio.h>

$include decimal;

char result[40];

main()
{
 int x;
 dec_t num;
 long n;

 if (x = deccvlong(129449233L, &num))
{
printf("Error %d in converting long to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal to string\n", x);
exit(1);
}

 printf("\tResult #1: %s\n", result);

 n = 2147483646; /* set n */
 if (x = deccvlong(n, &num))

{
printf("Error %d in converting long to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal to string\n", x);
exit(1);
}

 printf("\tResult #2: %s\n", result);
 exit(0);
}

Example Output

Result #1: 129449233.0
Result #2: 2147483646.0
4-17

DECTOLONG
DECTOLONG

Purpose
The dectolong function converts a decimal type number into a C type long.

Syntax

int dectolong(np, lngp)
dec_t *np;
long *lngp;

lngp is a pointer to a long integer where the result of the conver-
sion is placed.

np is a pointer to a decimal structure.

Return Codes
0 The conversion was successful.

-1200 The magnitude of the decimal type number > 2,147,483,647.
4-18

Example Output
Example

/*
 * dectolong.ec *

 The following program converts two decimal numbers to longs and displays
 the return value and the result for each conversion.
*/

#include <stdio.h>

$include decimal;

char string1[] = "2146382012";
char string2[] = "3238299493";

main()
{
 int r = 0;
 long n = 0;
 dec_t num;

 deccvasc(string1, strlen(string1), &num); /* string to decimal */
 r = dectolong(&num, &n); /* decimal to long */
 /*

display result
 */
 printf("\n\tReturn #1: %05.d, Result #1: %ld", r, n);
 n = 0; /* clear n */
 deccvasc(string2, strlen(string2), &num); /* string to decimal */
 r = dectolong(&num, &n); /* decimal to long */
 /*

display result
 */
 printf("\n\tReturn #2: %05.d, Result #2: %ld", r, n);
}

Example Output

Return #1: 00000, Result #1: 2146382012
Return #2: -1200, Result #2: 0
4-19

DECCVDBL
DECCVDBL

Purpose
The deccvdbl function converts a C type double into a decimal type number.

Syntax

int deccvdbl(dbl, np)
double dbl;
dec_t *np;

dbl is the double value that is converted into a decimal type
value.

np is a decimal structure that contains the decimal type
number.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
4-20

Example Output
Example

/*
 * deccvdbl.ec *

 The following program converts two double type numbers to decimal numbers
 and displays the results.
*/

#include <stdio.h>

$include decimal;

char result[40];

main()
{
 int x;
 dec_t num;
 double d = 2147483647;

 if (x = deccvdbl((double)1234.5678901234, &num))
{
printf("Error %d in converting double1 to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal1 to string\n", x);
exit(1);
}

 printf("\tResult #1: %s\n", result);

 if (x = deccvdbl(d, &num))
{
printf("Error %d in converting double2 to decimal\n", x);
exit(1);
}

 if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting decimal2 to string\n", x);
exit(1);
}

 printf("\tResult #2: %s\n", result);
 exit(0);
}

Example Output

Result #1: 1234.5678901234
Result #2: 2147483647.0
4-21

DECTODBL
DECTODBL

Purpose
The dectodbl function converts a decimal type number into a double.

Syntax

int dectodbl(np, dblp)
dec_t *np;
double *dblp;

dblp is a pointer to a double where the result of the conversion is
placed.

np is a pointer to a decimal structure.

Usage
Depending on the floating-point format of the host machine, the conversion
of a decimal type number to a double can result in the loss of precision.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
4-22

Return Codes
Example

/*
 * dectodbl.ec *

 The following program converts two decimal numbers to doubles and displays
 the results.
*/

#include <stdio.h>

$include decimal;

char string1[] = "2949.3829398204382";
char string2[] = "3238299493";
char result[40];

main()
{
 int x;
 double d = 0;
 dec_t num;

 if (x = deccvasc(string1, strlen(string1), &num))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = dectodbl(&num, &d))
{
printf("Error %d in converting decimal1 to double\n", x);
exit(1);
}

 printf("\t String 1: %s\n", string1);
 printf("\tDouble val: %.15f\n", d);

 if (x = deccvasc(string2, strlen(string2), &num))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = dectodbl(&num, &d))
{
printf("Error %d in converting decimal2 to double\n", x);
exit(1);
}

 printf("\t String 2: %s\n", string2);
 printf("\tDouble val: %f\n", d);
 exit(0);
}

4-23

Example Output
Example Output

 String 1: 2949.3829398204382
Double val: 2949.382939820438423
 String 2: 3238299493
Double val: 3238299493.000000
4-24

DECADD, DECSUB, DECMUL, and DECDIV
DECADD, DECSUB, DECMUL, and DECDIV

Purpose
The decadd, decsub, decmul, and decdiv arithmetic functions take pointers
to three decimal structures as parameters. The first two decimal structures
hold the operands of the arithmetic function. The third decimal structure is
where the result is placed.

Syntax

int decadd(n1, n2, result)/* result = n1 + n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

int decsub(n1, n2, result)/* result = n1 - n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

int decmul(n1, n2, result)/* result = n1 * n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

int decdiv(n1, n2, result)/* result = n1 / n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

n1 is a pointer to the decimal structure of the first operand.

n2 is a pointer to the decimal structure of the second operand.

result is a pointer to the decimal structure of the result of the
operation.

Usage
The result can be the same as either n1 or n2.
4-25

Return Codes
Return Codes
0 The operation was successful.
-1200 The operation resulted in overflow.
-1201 The operation resulted in underflow.
-1202 The operation attempted to divide by zero.

DECADD Example

/*
 * decadd.ec *

 The following program obtains the sum of two decimal numbers.
*/

#include <stdio.h>

$include decimal;

char string1[] = " 1000.6789";/* leading spaces will be ignored */
char string2[] = "80";
char result[40];

main()
{
 int x;
 dec_t num1, num2, sum;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = decadd(&num1, &num2, &sum))
{
printf("Error %d in adding decimals\n", x);
exit(1);
}

 if (x = dectoasc(&sum, result, sizeof(result), -1))
{
printf("Error %d in converting decimal result to string\n", x);
exit(1);
}

 printf("\t%s + %s = %s\n", string1, string2, result); /* display result */
 exit(0);
}

4-26

DECADD Example Output
DECADD Example Output

 1000.6789 + 80 = 1080.6789

DECSUB Example

/*
 * decsub.ec *

 The following program subtracts two decimal numbers and displays the result.
*/

#include <stdio.h>

$include decimal;

char string1[] = "1000.038782";
char string2[] = "480";
char result[40];

main()
{
 int x;
 dec_t num1, num2, diff;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = decsub(&num1, &num2, &diff))
{
printf("Error %d in subtracting decimals\n", x);
exit(1);
}

 if (x = dectoasc(&diff, result, sizeof(result), -1))
{
printf("Error %d in converting result to string\n", x);
exit(1);
}

 printf("\t%s - %s = %s\n", string1, string2, result);
 exit(0);
}

4-27

DECSUB Example Output
DECSUB Example Output

1000.038782 - 480 = 520.038782

DECMUL Example

/*
 * decmul.ec *

 The decmul.ec program multiplies two decimal numbers and displays the result.
*/

#include <stdio.h>

$include decimal;

char string1[] = "80.2";
char string2[] = "6.0";
char result[40];

main()
{
 int x;
 dec_t num1, num2, mpx;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = decmul(&num1, &num2, &mpx))
{
printf("Error %d in converting multiply\n", x);
exit(1);
}

 if (x = dectoasc(&mpx, result, sizeof(result), -1))
{
printf("Error %d in converting mpx to display string\n", x);
exit(1);
}

 printf("\t%s * %s = %s\n", string1, string2, result);
 exit(0);
}

4-28

DECMUL Example Output
DECMUL Example Output

80.2 * 6.0 = 481.2

DECDIV Example

/*
 * decdiv.ec *

 The following program divides two decimal numbers and displays the result.
*/

#include <stdio.h>

$include decimal;

char string1[] = "480";
char string2[] = "80";
char result[40];

main()
{
 int x;
 dec_t num1, num2, dvd;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = decdiv(&num1, &num2, &dvd))
{
printf("Error %d in converting divide num1 by num2\n", x);
exit(1);
}

 if (x = dectoasc(&dvd, result, sizeof(result), -1))
{
printf("Error %d in converting dividend to string\n", x);
exit(1);
}

 printf("\t%s / %s = %s\n", string1, string2, result);
 exit(0);
}

4-29

DECDIV Example Output
DECDIV Example Output

480 / 80 = 6.0
4-30

DECCMP
DECCMP

Purpose
The deccmp function compares two decimal type numbers.

Syntax

int deccmp(n1, n2)
dec_t *n1;
dec_t *n2;

n1 is a pointer to a decimal structure of the first number.

n2 is a pointer to a decimal structure of the second number.

Return Codes
-1 The first value is less than the second value.

0 The two values are identical.

1 The first value is greater than the second value.

DECUNKNOWN Either value is null.
4-31

Example Output
Example

/*
 * deccmp.ec *

 The following program compares decimal numbers and displays the results.
*/

#include <stdio.h>

$include decimal;

char string1[] = "-12345.6789";/* leading spaces will be ignored */
char string2[] = "12345.6789";
char string3[] = "-12345.6789";
char string4[] = "-12345.6780";

main()
{
 int x;
 dec_t num1, num2, num3, num4;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to decimal\n", x);
exit(1);
}

 if (x = deccvasc(string4, strlen(string4), &num4))
{
printf("Error %d in converting string4 to decimal\n", x);
exit(1);
}

 printf("\tResult #1: %d\n", deccmp(&num1, &num2));
 printf("\tResult #2: %d\n", deccmp(&num2, &num3));
 printf("\tResult #3: %d\n", deccmp(&num1, &num3));
 printf("\tResult #4: %d\n", deccmp(&num3, &num4));
 exit(0);
}

Example Output

Result #1: -1
Result #2: 1
Result #3: 0
Result #4: -1
4-32

DECCOPY
DECCOPY

Purpose
The deccopy function copies one decimal structure to another.

Syntax

void deccopy(n1, n2)
dec_t *n1;
dec_t *n2;

n1 is a pointer to the value held in the source decimal structure.

n2 is a pointer to the destination decimal structure.
4-33

Example Output
Example

/*
 * deccopy.ec *

 The following program copies one decimal number to another.
*/

#include <stdio.h>

$include decimal;

char string1[] = "12345.6789";
char result[40];

main()
{
 int x;
 dec_t num1, num2;

 if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to decimal\n", x);
exit(1);
}

 deccopy(&num1, &num2);
 if (x = dectoasc(&num2, result, sizeof(result), -1))

{
printf("Error %d in converting num2 to string\n", x);
exit(1);
}

 printf("\t%s\n", result);
 exit(0);
}

Example Output

12345.6789
4-34

DECECVT and DECFCVT
DECECVT and DECFCVT

Purpose
The dececvt and decfcvt functions are analogous to the subroutines under
ECVT(3) in section three of the UNIX Programmer’s Manual. The dececvt func-
tion works in the same fashion as ecvt(3), and the decfcvt function works in
the same fashion as fcvt(3). They both convert a DECIMAL value to an ASCII
string.

Syntax

char *dececvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

char *decfcvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

decpt is a pointer to an integer that is the position of the decimal
point relative to the beginning of the string. A negative value
for *decpt means to the left of the returned digits.

ndigit is the length of the ASCII string for dececvt. It is the number
of digits to the right of the decimal point for decfcvt.

np is a pointer to a decimal structure containing the DECIMAL
value to be converted.

sign is a pointer to the sign of the result. If the sign of the result is
negative, *sign is nonzero; otherwise, it is zero.

Usage
The dececvt function converts the DECIMAL value pointed to by np into a
null-terminated string of ndigit ASCII digits and returns a pointer to the
string.

The low-order digit is rounded.
4-35

Usage
The decfcvt function is identical to dececvt, except that ndigit specifies the
number of digits to the right of the decimal point instead of the total number
of digits.
Let np point to 12345.67 and suppress all arguments except ndigit:

dececvt(4) = "1235" *decpt = 5
dececvt(10) = "1234567000" *decpt = 5
decfcvt(1) = "123457" *decpt = 5
decfcvt(3) = "12345670" *decpt = 5

Now let np point to .001234:

dececvt(4) = "1234" *decpt = -2
dececvt(10) = "1234000000" *decpt = -2
decfcvt(1) = "" *decpt = -2
decfcvt(3) = "1" *decpt = -2
4-36

Usage
DECECVT Example

/*
 * dececvt.ec *

 The following program converts a series of DECIMAL numbers to fixed
 strings of 20 ASCII digits. For each conversion it displays the resulting
 string, the decimal position from the beginning of the string and the
 sign value. The display illustrates how the results of dececvt should
 be interpreted.
*/

#include <stdio.h>

$include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",
 0
 };

char result[40];

main()
{
 int x;
 int i = 0, f, sign;
 dec_t num;
 char *dp, *dececvt();

 while(strings[i])
{
if (x = deccvasc(strings[i], strlen(strings[i]), &num))
 {
 printf("Error %d in converting string [%s] to Decimal\n",

 x, strings[i]);
 break;
 }
dp = dececvt(&num, 20, &f, &sign);/* to ASCII string */

/* display result */
printf("\tInput string[%d]: %s\n", i, strings[i]);
printf("\tOutput of dececvt: %c%*.*s.%s decpt: %d sign: %d\n\n",

(sign ? '-' : '+'), f, f, dp, dp+f, f, sign);
++i; /* next string */
}

}

4-37

DECECVT Example Output
DECECVT Example Output

Input string[0]: 210203.204
Output of dececvt: +210203.20400000000000 decpt: 6 sign: 0

Input string[1]: 4894
Output of dececvt: +4894.0000000000000000 decpt: 4 sign: 0

Input string[2]: 443.334899312
Output of dececvt: +443.33489931200000000 decpt: 3 sign: 0

Input string[3]: -12344455
Output of dececvt: -12344455.000000000000 decpt: 8 sign: 1
4-38

DECECVT Example Output
DECFCVT Example

/*
 * decfcvt.ec *

 The following program converts a series of DECIMAL numbers to strings of
 ASCII digits with 3 digits to the right of the decimal point. For each
 conversion it displays the resulting string, the position of the decimal
 point from the beginning of the string and the sign value. The display
 illustrates how the results of decfcvt should be interpreted.
*/

#include <stdio.h>

$include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",
 0
 };

char result[40];

main()
{
 int x;
 dec_t num;
 int i = 0, f, sign;
 char *dp, *decfcvt();

 while(strings[i])
 {
 if (x = deccvasc(strings[i], strlen(strings[i]), &num))

 {
 printf("Error %d in converting string [%s] to Decimal\n",

 x, strings[i]);
 break;
 }

dp = decfcvt(&num, 3, &f, &sign);/* to ASCII string */

/* display result */
printf("\tInput string[%d]: %s\n", i, strings[i]);
printf("\tOutput of decfcvt: %c%*.*s.%s decpt: %d sign: %d\n\n",

(sign ? '-' : '+'), f, f, dp, dp+f, f, sign);
++i; /* next string */
}

}

4-39

DECFCVT Example Output
DECFCVT Example Output

Input string[0]: 210203.204
Output of decfcvt: +210203.204 decpt: 6 sign: 0

Input string[1]: 4894
Output of decfcvt: +4894.000 decpt: 4 sign: 0

Input string[2]: 443.334899312
Output of decfcvt: +443.335 decpt: 3 sign: 0

Input string[3]: -12344455
Output of decfcvt: -12344455.000 decpt: 8 sign: 1
4-40

DECROUND
DECROUND

Purpose
The decround function rounds a decimal type number to fractional digits.

Syntax

void decround(d, s)
dec_t *d;
int s;

d is a dec_t structure for a decimal number whose value is
rounded.

s is the number of fractional digits to which the number in d is
rounded.

Usage
The rounding factor is 5×10-s-1. Rounding is performed by adding the factor
to a positive number or by subtracting it from a negative number, and then
truncating to s digits, as follows:

unrounded s rounded truncated

1.4 0 1.0 1.0
1.5 0 2.0 1.0
1.684 2 1.68 1.68
1.685 2 1.69 1.68
1.685 1 1.7 1.6
1.685 0 2.0 1.0
4-41

Example
Example

/*
 * decround.ec *

 The following program rounds a decimal type number six times and displays
 the result of each operation.
*/

#include <stdio.h>

$include decimal;

char string[] = "-12345.038572";
char result[40];

main()
{
 int x;
 int i = 6;/* number of decimal places to start with */
 dec_t num1;

 while(i)
{
if (x = deccvasc(string, strlen(string), &num1))
 {
 printf("Error %d in converting string to decimal\n", x);
 break;
 }
decround(&num1, i);
if (x = dectoasc(&num1, result, sizeof(result), -1))
 {
 printf("Error %d in converting result to string\n", x);
 break;
 }
printf("\tRound %d: %s\n", i--, result);
}

}

Example Output

Round 6: -12345.038572
Round 5: -12345.03857
Round 4: -12345.0386
Round 3: -12345.039
Round 2: -12345.04
Round 1: -12345.0
4-42

DECTRUNC
DECTRUNC

Purpose
The dectrunc function truncates to fractional digits a decimal type number
that has been rounded.

Syntax

void dectrunc(d, s)
dec_t *d;
int s;

d is a dec_t structure for a rounded decimal number whose
value is truncated.

s is the number of fractional digits to which the number is
truncated.

Usage
The following examples show the outcome of using dectrunc with various
inputs:

unrounded s rounded truncated

1.4 0 1.0 1.0
1.5 0 2.0 1.0
1.684 2 1.68 1.68
1.685 2 1.69 1.68
1.685 1 1.7 1.6
1.685 0 2.0 1.0
4-43

Example
Example

/*
 * dectrunc.ec *

 The following program truncates a decimal number six times and displays each
 result.
*/

#include <stdio.h>

$include decimal;

char string[] = " -12345.038572";
char result[40];

main()
{
 int x;
 int i = 6;/* number of decimal places to start with */
 dec_t num1;

 while(i)
{
if (x = deccvasc(string, strlen(string), &num1))
 {
 printf("Error %d in converting string to decimal\n", x);
 break;
 }
dectrunc(&num1, i);
if (x = dectoasc(&num1, result, sizeof(result), -1))
 {
 printf("Error %d in converting result to string\n", x);
 break;
 }
printf("\tTruncate to %d: %s\n", i--, result);
}

}

Example Output

Truncate to 6: -12345.038572
Truncate to 5: -12345.03857
Truncate to 4: -12345.0385
Truncate to 3: -12345.038
Truncate to 2: -12345.03
Truncate to 1: -12345.0
4-44

RFMTDEC
RFMTDEC

Purpose
The rfmtdec function converts a dec_t in internal format to a character string
formatted according to a pattern.

Syntax

int rfmtdec(dec, format, outbuf)
dec_t *dec;
char *format;
char *outbuf;

dec is the address of the decimal number to be formatted.

format is the address of the format string. The formatting
possibilities are described in the section “Numeric-
Formatting Routines” on page 2-31.

outbuf is the address of the buffer to receive the formatted
string.

Return Codes
0 The conversion was successful.

-1211 The program ran out of memory—memory-allocation error.

-1217 The format string is too large.
4-45

Example
Example

/*
 * rfmtdec.ec *

 The following program applies a series of format specifications to each of
 a series of decimal numbers and displays each result.
*/

#include <stdio.h>

$include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",
 0
 };

char *formats[] =
 {
 "**###########",
 "$$$$$$$$$$.##",
 "(&&,&&&,&&&.)",
 "<,<<<,<<<,<<<",
 "$*********.**",
 0
 };

char result[40];

main()
{
 int x;
 int s = 0, f;
 dec_t num;

 while(strings[s])
{

4-46

Example Output
/*
 * Convert each string to decimal
 */
if (x = deccvasc(strings[s], strlen(strings[s]), &num))
 {
 printf("Error %d in converting string [%s] to decimal\n",

x, strings[s]);
 break;
 }
f = 0;
while(formats[f])
 {
 /*
 * Format DecimalDecimal num for each of formats[f]
 */
 rfmtdec(&num, formats[f], result);
 /*
 * Display result and bump to next format (f++)
 */
 printf("\n\tstrings[%d], formats[%d]: %s", s, f++, result);
 }
++s; /* bump to next string */
printf("\n"); /* separate result groups */

 }
}

Example Output

strings[0], formats[0]: ** 210203
strings[0], formats[1]: $210203.20
strings[0], formats[2]: 000210,203.
strings[0], formats[3]: 210,203
strings[0], formats[4]: $***210203.20

strings[1], formats[0]: ** 4894
strings[1], formats[1]: $4894.00
strings[1], formats[2]: 000004,894.
strings[1], formats[3]: 4,894
strings[1], formats[4]: $*****4894.00

strings[2], formats[0]: ** 443
strings[2], formats[1]: $443.33
strings[2], formats[2]: 0000000443.
strings[2], formats[3]: 443
strings[2], formats[4]: $******443.33

strings[3], formats[0]: ** 12344455
strings[3], formats[1]: $12344455.00
strings[3], formats[2]: (12,344,455.)
strings[3], formats[3]: 12,344,455
strings[3], formats[4]: $*12344455.00
4-47

Example Output
4-48

Chapter
5

Working with Time
Data Types
Chapter Overview 3

The DATE Data Type 3

DATE Functions 4
RDATESTR 5
RDAYOFWEEK 7
RDEFMTDATE 9
RFMTDATE 12
RJULMDY 15
RLEAPYEAR 17
RMDYJUL 19
RSTRDATE 21
RTODAY 23

DATETIME and INTERVAL Data Types 24
DATETIME and INTERVAL Columns 24
Declaring DATETIME and INTERVAL Host

Variables 25
Fetching DATETIME and INTERVAL Values 26

Fetching DATETIME Values 26
Fetching INTERVAL Values 26
Implicit Data Conversion When Fetching 26

Storing DATETIME and INTERVAL Values 27
Implicit Data Conversion When Storing

DATETIME and INTERVAL Values 27

Converting Between DATETIME and DATE Data
Types 27

DATETIME and INTERVAL Data Type Functions 28
DTCURRENT 30

DTCVASC 32
DTCVFMTASC 35
DTEXTEND 37
DTTOASC 40
DTTOFMTASC 42
INCVASC 44
INCVFMTASC 46
INTOASC 48
INTOFMTASC 50
5-2

Chapter Overview
This chapter contains information on how to use DATETIME, INTERVAL, and
DATE data type values in an INFORMIX-ESQL/C program. Specifically, it con-
tains the following information:

• An overview of the DATE data type

• A list of functions you can use with the DATE data type

• The syntax for functions that you can use to manipulate the DATE data
type

• An overview of the DATETIME and INTERVAL data types and how to use
them

• A discussion of converting DATETIME and DATE data types

• The syntax for functions that you can use to manipulate the DATETIME
and INTERVAL data types

For information about all of the data types available for use in an ESQL/C pro-
gram, see Chapter 2 of this manual. For information about SQL data types,
see Chapter 3 of The Informix Guide to SQL: Reference.

The DATE Data Type
INFORMIX-ESQL/C stores dates as four-byte integers whose value is the num-
ber of days since December 31, 1899. Dates before December 31, 1899, are neg-
ative numbers, while dates after December 31, 1899, are positive numbers.
For a complete description of the DATE data type, see Chapter 3 of The Infor-
mix Guide to SQL: Reference.
5-3

DATE Functions
DATE Functions
The following DATE manipulation functions are included in the libraries dis-
tributed with INFORMIX-ESQL/C for converting dates written in string form
to and from this internal format. These functions are described on the next
several pages.

Function Name Description
rdatestr Converts an internal format to a string format
rdayofweek Returns day of the week
rdefmtdate Converts a string format to an internal format
rfmtdate Converts an internal format to a string format
rjulmdy Returns month, day, and year from an internal format
rleapyear Determines whether it is leap year
rmdyjul Returns an internal format from month, day, and year
rstrdate Converts a string format to an internal format
rtoday Returns a system date in internal format
5-4

RDATESTR
RDATESTR

Purpose
The rdatestr function converts a date in internal format to a character string
date of the form mm/dd/yyyy.

Syntax

int rdatestr(jdate, str)
long jdate;
char *str;

jdate is the internal representation of a date as a long integer.

str is a pointer to the area where the results are to be stored.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
5-5

Example Output
Example

/*
 * rtoday.ec *

 The following program obtains today's date from the system.
 It then converts it to ASCII for displaying the result.
*/

#include <stdio.h>

main()
{
 int errnum;
 char today_date[20];
 long i_date;

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert date from internal format into a mm/dd/yyy string */
 if ((errnum = rdatestr(i_date, today_date)) == 0)

printf("\n\tToday's date is %s.\n", today_date);
 else

printf("\n\tError %d in coverting date to mm/dd/yyy\n", errnum);
}

Example Output

Today's date is 10/26/1991.
5-6

RDAYOFWEEK
RDAYOFWEEK

Purpose
The rdayofweek function returns the day of the week represented as an inte-
ger, given an internal date as an argument.

Syntax

int rdayofweek(jdate)
long jdate;

jdate is the internal representation of the date as a long integer.

Return Values
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
5-7

Example Output
Example

/*
 * rdayofweek.ec *

 The following program obtains today's date from the system
 and determines the what day of the week it is.
*/

#include <stdio.h>

main()
{
 char today_date[11];
 long i_date;
 char *day_name;

 /* Put today's date into the internal format for a date */
 rtoday(&i_date);

 /* Put i_date into a mm/dd/yyy string */
 rdatestr(i_date, today_date);

 printf("\nToday's date is %s.\n", today_date);

 /* Figure out what day of the week i_date is */
 switch (rdayofweek(i_date))

{
case 0: day_name = "Sunday"; break;
case 1: day_name = "Monday"; break;
case 2: day_name = "Tuesday"; break;
case 3: day_name = "Wednesday"; break;
case 4: day_name = "Thursday"; break;
case 5: day_name = "Friday"; break;
case 6: day_name = "Saturday"; break;
}

 printf("\nIt is %s.\n", day_name);
}

Example Output

Today's date is 10/26/1991.

It is Saturday.
5-8

RDEFMTDATE
RDEFMTDATE

Purpose
The rdefmtdate function creates a long integer whose value is the number of
days since December 31, 1899, for a string date whose format is provided.

Syntax

int rdefmtdate(jdate, fmtstring, input)
long *jdate;
char *fmtstring;
char *input;

fmtstring is a pointer to a character array containing the format pattern
for the date supplied in input.

input is a pointer to the string containing the date to be converted
to a long integer.

jdate is a long integer, the internal representation of the date
expressed as input.

Usage
The string fmtstring uses the same formatting characters as rfmtdate, as
shown on page 5-12.

The input string and the fmtstring must be in the same sequential order in
terms of month, day, and year. They need not, however, have the same literals
nor the same representation for month, day, and year.
5-9

Return Codes
The following combinations of fmtstring and input are valid:

fmtstring input

"mmddyy" "Dec. 25th, 1991"
"mmm. dd. yyyy" "dec 25 1991"
"mmm. dd. yyyy" "DEC-25-1991"
"mmm. dd. yyyy" "122591"
"mmm. dd. yyyy" "12/25/91"
"yy/mm/dd" "91/12/25"
"yy/mm/dd" "1991, December 25th"
"yy/mm/dd" "In the year 1991, the month of December, its 25th day"
"dd-mm-yy" "This 25th day of December, 1991"

Return Codes
0 The operation was successful.

-1204 There is an invalid year component in the input parameter.

-1205 There is an invalid month component in the input parameter.

-1206 There is an invalid day component in the input parameter.

-1209 Since *input does not contain delimiters between the year,
month, and day components, the length of *input must be
exactly six or eight bytes.

-1212 fmtstring does not contain a year, a month, and a day
component.
5-10

Example Output
Example

/*
 * rdefmtdate.ec *

 The following program accepts a date entered from the console,
 converts it into the internal date format using rdefmtdate().
 It checks the conversion by finding the day of the week.
*/

#include <stdio.h>

main()
{
 int x;
 char date[20];
 long i_date;
 char *day_name;

 static char fmtstr[9] = "mmddyyyy";

 printf("Enter a date as a single string, month.day.year\n");
 gets(date);

 printf("\nThe date is %s.\n", date);

 if (x = rdefmtdate(&i_date, fmtstr, date))
printf("Error %d on rdefmtdate conversion\n", x);

 else
{
/* Figure out what day of the week i_date is */
switch (rdayofweek(i_date))
 {
 case 0: day_name = "Sunday"; break;
 case 1: day_name = "Monday"; break;
 case 2: day_name = "Tuesday"; break;
 case 3: day_name = "Wednesday"; break;
 case 4: day_name = "Thursday"; break;
 case 5: day_name = "Friday"; break;
 case 6: day_name = "Saturday"; break;
 }
printf("\nThe day of the week is %s.\n", day_name);
}

}

Example Output

Enter a date as a single string, month.day.year
020192

The date is 020192.

The day of the week is Saturday.
5-11

RFMTDATE
RFMTDATE

Purpose
The rfmtdate function converts a date in internal format to a string formatted
according to a pattern.

Syntax

int rfmtdate(jdate, fmtstring, result)
long jdate;
char *fmtstring;
char *result;

fmtstring is a pointer to the character array containing the format pat-
tern for the date returned in result.

jdate is the internal representation of a date as a long integer.

result is a pointer to the character array that receives the formatted
date.

Usage
The fmtstring date string consists of combinations of the characters m, d, and
y, as shown in the following example:

Format Meaning
dd Day of the month as a 2-digit number (01-31)
ddd Day of the week as a 3-letter abbreviation (Sun through Sat)

mm Month as a 2-digit number (01-12)
mmm Month as a 3-letter abbreviation (Jan through Dec)

yy Year as a 2-digit number in the 1900s (00-99)
yyyy Year as a 4-digit number (0001-9999)

Any other characters in fmtstring are reproduced literally in result.
5-12

Return Codes
The examples that follow convert the integer jdate that corresponds to
December 25, 1992, to a string result using the format in fmtstring:

fmtstring result
"mmddyy" 122592
"ddmmyy" 251292
"yymmdd" 921225
"yy/mm/dd" 92/12/25
"yy mm dd" 92 12 25
"yy-mm-dd" 92-12-25
"mmm. dd, yyyy" Dec. 25, 1992
"mmm dd yyyy" Dec 25 1992
"yyyy dd mm" 1992 25 12
"mmm dd yyyy" Dec 25 1992
"ddd, mmm. dd, yyyy" Mon, Dec. 25, 1992
"(ddd) mmm. dd, yyyy" (Mon) Dec. 25, 1992

Return Codes
0 The conversion was successful.

-1210 The internal date cannot be converted to month-day-year
format.

-1211 The program ran out of memory—memory-allocation error.
5-13

Example Output
Example

/*
 * rfmtdate.ec *

 The following program converts a date from internal format to
 a specified format using rfmtdate().
*/

#include <stdio.h>

main()
{
 char today_date[11];
 long i_date;
 int x;

 /* Put today's date into the internal format for a date */
 rtoday(&i_date);

 /*
 * Convert date to "mm-dd-yyyy" format
 */
 if (x = rfmtdate(i_date, "mm-dd-yyyy", today_date))

printf("rfmtdate call failed with error %d\n", x);
 else

printf("\tToday's date is %s.\n", today_date);

 /*
 * Convert date to "mm.dd.yy" format
 */
 if (x = rfmtdate(i_date, "mm.dd.yy", today_date))

printf("rfmtdate call failed with error %d\n",x);
 else

printf("\tToday's date is %s.\n", today_date);

 /*
 * Convert date to "mmm ddth, yyyy" format
 */
 if (x = rfmtdate(i_date, "mmm ddth, yyyy", today_date))

printf("rfmtdate call failed with error %d\n", x);
 else

printf("\tToday's date is %s.\n", today_date);
}

Example Output

Today's date is 10-26-1991.
Today's date is 10.26.91.
Today's date is Oct 26th, 1991.
5-14

RJULMDY
RJULMDY

Purpose
The rjulmdy function creates an array of three short integers containing the
month, day, and year components corresponding to an internal date.

Syntax

int rjulmdy(jdate, mdy)
long jdate;
short mdy[3];

jdate is the internal representation of the date as a long integer.

mdy is an array of short integers, where mdy[0] is the month (1 to
12), mdy[1] is the day (1 to 31), and mdy[2] is the year (1 to
9999).

Return Codes
= 0 The operation was successful.

 < 0 The operation failed.
5-15

Example Output
Example

/*
 * rjulmdy.ec *

 The following program illustrates the conversion of date in internal format
 to an array of three short integers, one each for month, day and year.
*/

#include <stdio.h>

main()
{
 long i_date;
 short mdy_array[3];
 int errnum;

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert from internal format to MDY array */
 if ((errnum = rjulmdy(i_date, mdy_array)) == 0)
 {

printf("The month component is: %d\n", mdy_array[0]);
 printf("The day component is: %d\n", mdy_array[1]);
 printf("The year component is: %d\n", mdy_array[2]);

}
 else

printf("rjulmdy call failed with error %d", errnum);
}

Example Output

The month component is: 10
The day component is: 26
The year component is: 1991
5-16

RLEAPYEAR
RLEAPYEAR

Purpose
The rleapyear function returns TRUE when the argument passed to it is a leap
year and FALSE when it is not.

Syntax

int rleapyear(year)
int year;

year is an integer.

Usage
The argument year must be the year component of a date and not the date
itself.

The year must be expressed in full (1992) and not abbreviated (92).

Return Codes
1 The year is a leap year.
0 The year is not a leap year.
5-17

Example Output
Example

/*
 * rleapyear.ec *

 The following program obtains the system date into a long integer in
 the internal format.
 It then converts the internal format into an array of three short integers
 that contain the month, day, and year portions of the date.
 It then tests the year value to see if the year is a leap year.
*/

#include <stdio.h>

main()
{
 long i_date;
 int errnum;
 short mdy_array[3];

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert internal format into a MDY array */
 if ((errnum = rjulmdy(i_date, mdy_array)) == 0)

{
/* Check if it is a leap year */
if (rleapyear(mdy_array[2]))
 printf("%d is a leap year\n", mdy_array[2]);
else
 printf("%d is not a leap year\n", mdy_array[2]);
}

 else
printf("rjulmdy call failed with error %d", errnum);

}

Example Output

1991 is not a leap year
5-18

RMDYJUL
RMDYJUL

Purpose
The rmdyjul function creates an internal date from three short integers that
contain the numeric values for the month, day, and year.

Syntax

int rmdyjul(mdy, jdate)
short mdy[3];
long *jdate;

jdate is a pointer to the internal representation of the returned
date as a long integer.

mdy is an array of short integers, where mdy[0] is the month (1 to
12), mdy[1] is the day (1 to 31), and mdy[2] is the year (1 to
9999).

Usage
The year must be expressed in full (1992) and not abbreviated (92).

Return Codes
0 The operation was successful.
-1204 There was an invalid year component in mdy[2].
-1205 There was an invalid month component in mdy[0].
-1206 There was an invalid day component in mdy[1].
5-19

Example Output
Example

/*
 * rmdyjul.ec *

 The following program converts an array of three short integers
 (containg values for month, day and year) into internal format for date.
*/

#include <stdio.h>

main()
{
 long i_date;
 int errnum;
 static short mdy_array[3] = { 12, 21, 1985 };

 /* Convert MDY array into internal format */
 if ((errnum = rmdyjul(mdy_array, &i_date)) == 0)
 printf("12/21/1985 converted to internal format\n");
 else

printf("rmdyjul call failed with errnum = %d\n", errnum);
}

Example Output

12/21/1985 converted to internal format
5-20

RSTRDATE
RSTRDATE

Purpose
The rstrdate function converts a character string date to a date in internal
format.

Syntax

int rstrdate(str, jdate)
char *str;
long *jdate;

jdate is a pointer to a long integer that receives the converted date.

str is a pointer to the string to be converted.

Usage
The str should contain a numeric month, day, and year in that order. Any
non-numeric character can be used as a separator between the month, day,
and year.

The year must be expressed in full (1992) and not abbreviated (92).

Return Codes
= 0 The conversion was successful.

< 0 The conversion failed.
5-21

Example
Example

/*
 * rstrdate.ec *
 The following program converts a character string
 in "mmddyyyy" format to an internal date format.
*/

#include <stdio.h>

main()
{
 long i_date;
 int errnum;

 /* Convert Sept. 6th, 1989 into i_date */
 if ((errnum = rstrdate("9.6.1989", &i_date)) == 0)

printf("9/6/1989 converted to internal format\n");
 else

printf("rstrdate call failed with error %d\n", errnum);
}

Example Output

9/6/1989 converted to internal format
5-22

RTODAY
RTODAY

Purpose
The rtoday function puts the system date into internal format.

Syntax

void rtoday(today)
long *today;

today is a pointer to a long integer that receives the current system
date in internal format.

Example

/*
 * rtoday.ec *

 The following program obtains today's date from the system.
 It then converts it to ASCII for displaying the result.
*/

#include <stdio.h>

main()
{
 int errnum;
 char today_date[20];
 long i_date;

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert date from internal format into a mm/dd/yyy string */
 if ((errnum = rdatestr(i_date, today_date)) == 0)

printf("\n\tToday's date is %s.\n", today_date);
 else

printf("\n\tError %d in coverting date to mm/dd/yyy\n", errnum);
}

Example Output

Today's date is 10/26/1991.
5-23

DATETIME and INTERVAL Data Types
DATETIME and INTERVAL Data Types
The DATETIME data type encodes a time to a particular precision. The preci-
sion is expressed by a qualifier, and the qualifier is an integral part of the data
type. As a host variable, a DATETIME value is represented in a structure of
type dtime_t:

typedef struct dtime {
short dt_qual;
dec_t dt_dec;

} dtime_t;

The qualifier of the value is represented in the dt_qual field, and the digits of
the fields of the value are stored in dt_dec.

The INTERVAL data type encodes an interval of time to a particular precision.
The precision is expressed by a qualifier and, as with DATETIME, the qualifier
is an integral part of the data type. As a host variable, an INTERVAL value is
represented in a structure of type intrvl_t:

typedef struct intrvl {
short in_qual;
dec_t in_dec;

} intrvl_t;

These structures, along with a number of macro definitions for use in com-
posing qualifier values, are contained in the include file datetime.h The type
dec_t that is a component of these structures is defined in the file decimal.h.

A DATETIME or INTERVAL data type is stored as a decimal number with a
scale factor of zero and a precision equal to the number of digits implied by
its qualifier. Once you know the precision and scale, you know the storage
format. For example, a table column defined as DATETIME YEAR TO DAY con-
tains four digits for year, two digits for month, and two digits for day, for a
total of eight digits. It is thus stored as if it were DECIMAL(8,0).

DATETIME and INTERVAL Columns
A DATETIME column holds a value that represents a moment in time. For
information about creating a column of the DATETIME data type, see
Chapter 3 of The Informix Guide to SQL: Reference.
5-24

Declaring DATETIME and INTERVAL Host Variables
Use the INTERVAL data type for columns in which you plan to store values
that represent a span or period of time. For information about using the
INTERVAL data type in a column, see Chapter 3 of The Informix Guide to SQL:
Reference.

Declaring DATETIME and INTERVAL Host Variables
Declare a host variable for a DATETIME column by using the data type
DATETIME followed by an optional DATETIME qualifier:

$datetime year to day holidays[10];
$datetime hour to second wins, places, shows;
$datetime column6;

If you omit the qualifier from the declaration of the datetime host variable, as
in the last example, your program must explicitly initialize the qualifier using
the macros shown on page 5-29.

Declare a host variable for an INTERVAL column by using the data type
INTERVAL followed by an optional INTERVAL qualifier.

$interval day(3) to day accrued_leave, leave_taken;
$interval hour to second race_length;
$interval scheduled;

If you omit the qualifier from the declaration of the interval host variable, as
in the last example, your program must explicitly initialize the qualifier using
the macros shown on page 5-29.

Because of the multiword nature of these data types, it is not possible to
declare an uninitialized datetime or interval host variable named year,
month, day, hour, minute, second, or fraction. You should avoid the follow-
ing declarations:

$datetime year; /* will cause an error */
$datetime year to day year, today; /* ambiguous */
5-25

Fetching DATETIME and INTERVAL Values
Fetching DATETIME and INTERVAL Values

Fetching DATETIME Values

When a DATETIME value is fetched into a host variable of type dtime_t, one
of two events occurs:

• When the dt_qual field contains a valid qualifier, the database value is
extended to match the qualifier. (Extending is the operation of adding or
dropping fields of a DATETIME value to make it match a given qualifier.
Extending is done in SQL statements with the EXTEND function and in
INFORMIX-ESQL/C with the dtextend function.)

• When the dt_qual field does not contain a valid qualifier, the database
value and its qualifier are both fetched, thus initializing the host variable.
Zero is an invalid qualifier, so zero can be stored into the dt_qual field
whenever the database value is to be fetched, without extending it.

Fetching INTERVAL Values

When an INTERVAL value is fetched into an intrvl_t host variable, the
in_qual field of the variable is tested. If it contains zero (or any invalid qual-
ifier) both the database value and the database qualifier are fetched, initializ-
ing the variable.

When the variable qualifier is valid, it is checked for compatibility with the
database qualifier. (INTERVAL qualifiers are compatible provided that, if one
contains a field of month or year, the other contains only fields of month and
year.)

Implicit Data Conversion When Fetching

You can automatically convert DATETIME and INTERVAL values between
database columns and host variables of character type (char, string, or
fixchar). The fields of the DATETIME or INTERVAL value in the database are
converted to a character string, which is stored in the host variable. If the host
variable is too short, the string is truncated, sqlca.sqlwarn.sqlwarn1 is set to
W, and the indicator variable (if any) is set to the needed length.

Note that DATETIME and INTERVAL values cannot be fetched automatically
into number host variables.
5-26

Storing DATETIME and INTERVAL Values
Storing DATETIME and INTERVAL Values
When a host variable is used to store a DATETIME or INTERVAL value in the
database, it must contain a valid qualifier.

When storing a DATETIME value, the qualifier in the host variable can be dif-
ferent from the qualifier of the database column. The host variable value is
extended to match the database qualifier. When storing an INTERVAL value,
the host variable qualifier must be compatible with that of the database
column.

If the host qualifier is invalid or INTERVAL qualifiers are incompatible, a neg-
ative error code is set in sqlca.sqlcode and the update or insert operation
fails.

Implicit Data Conversion When Storing DATETIME and INTERVAL Values

When a host variable of character type is used to update or insert a
DATETIME or INTERVAL value, the database server tries to convert the char-
acters using the qualifier and type of the database column. If the conversion
fails, sqlca.sqlcode is set to a negative value and the update or insert opera-
tion fails.

Automatic conversion from number and date host variables is not
supported.

Converting Between DATETIME and DATE Data Types
No functions are provided to convert automatically between the DATETIME
and DATE data types. You can perform these conversions using existing func-
tions and intermediate strings.

To convert a DATETIME value to a DATE value, follow these steps:

1. Use dtextend to adjust the DATETIME qualifier to year to day.

2. Apply dttoasc, creating a character string in the form yyyy-mm-dd.

3. Use rdefmtdate with a pattern argument of yyyy-mm-dd to convert the
string to a DATE.

To convert a DATE value to a DATETIME value, follow these steps:

1. Declare a host variable with a qualifier of year to day (or, initialize the qual-
ifier with the value returned by TU_DTENCODE(TU_YEAR,TU_DAY).

2. Use rfmtdate with a pattern of yyyy-mm-dd to convert the DATE value to
a character string.
5-27

DATETIME and INTERVAL Data Type Functions
3. Use dtcvasc to convert the character string to a value in the prepared
datetime variable.

4. If necessary, use dtextend to adjust the DATETIME qualifier.

DATETIME and INTERVAL Data Type Functions
The following C function calls are available to treat datetime and interval
host variables:

Function Name Description
dtcurrent Gets the current date and time
dtextend Changes the qualifier of datetime
dtcvasc Converts an ANSI-compliant character string to datetime
dtcvfmtasc Converts a character string to datetime
dttoasc Converts a datetime to an ANSI-compliant character string
dttofmtasc Converts a datetime to a character string
incvasc Converts an ANSI-compliant character string to interval
incvfmtasc Converts a character string to interval
intoasc Converts an interval to an ANSI-compliant character string
intofmtasc Converts an interval to a character string

These functions are shown alphabetically on the following pages.

In addition to these functions, an include file named datetime.h is included
with the INFORMIX-ESQL/C libraries. This file, which defines the data struc-
tures, also defines the following names and macro functions (which are
required only when working directly with qualifiers in binary form):
5-28

DATETIME and INTERVAL Data Type Functions
Name of macro Description
TU_YEAR The name for a qualifier field
TU_MONTH The name for a qualifier field
TU_DAY The name for a qualifier field
TU_HOUR The name for a qualifier field
TU_MINUTE The name for a qualifier field
TU_SECOND The name for a qualifier field
TU_FRAC The name for the leading qualifier field of FRACTION
TU_Fn The names for datetime ending fields of

"FRACTION(n)", for n from 1 to 5
TU_START(q) Returns the leading field number from qualifier q
TU_END(q) Returns the trailing field number from qualifier q
TU_DTENCODE(f,t) Composes a DATETIME qualifier from the

first field number f and trailing field number t
TU_IENCODE(p,f,t) Composes an INTERVAL qualifier from the first field

number f with precision p and trailing field number t

Figure 5-1 DATETIME and INTERVAL qualifier macros
5-29

DTCURRENT
DTCURRENT

Purpose
The dtcurrent function assigns the current date and time to a datetime
variable.

Syntax

void dtcurrent(d)
dtime_t *d;

d is the address of an initialized dtime_t host variable.

Usage
If the variable qualifier is set to zero (or any invalid qualifier), it is initialized
to year to fraction(3).

If the variable contains a valid qualifier, the current date and time are
extended to agree with the qualifier.

Calls
These statements set the variable timewarp to the current date:

$datetime year to day timewarp;
dtcurrent(&timewarp);

These statements set the variable now to the current time, to the nearest
millisecond:

now.dt_qual = TU_DTENCODE(TU_HOUR,TU_F3);
dtcurrent(&now);
5-30

Example
Example

/*
 * dtcurrent.ec *

 The following program obtains the current date from the system
 in an internal format. It then converts it to ASCII and prints it.
*/

#include <stdio.h>

$include datetime;

main()
{
 int x;
 char out_str[16];
 $datetime year to hour dt1;

 /* Get today's date */
 dtcurrent(&dt1);

 /* Convert to ASCII for displaying */
 dttoasc(&dt1, out_str);
 printf("\tThe value of dt1 (year to hour) is %s\n", out_str);
}

Example Output

The value of dt1 (year to hour) is 1991-10-26 14
5-31

DTCVASC
DTCVASC

Purpose
The dtcvasc function converts a string that conforms to ANSI SQL standards
to a datetime value.

Syntax

int dtcvasc(str,d)
char *str;
dtime_t *d;

d is the address of an initialized dtime_t variable.

str is the address of a string of digits and field delimiters.

Usage
The variable must be initialized with the desired qualifier.

The input string can have leading and trailing spaces. However, from the first
significant digit to the last, the only characters accepted are digits and delim-
iters appropriate to the fields implied by the qualifier.

If a year value is given as one or two digits, 1900 is added to it.

If the input string is acceptable, the value is set in the variable and the func-
tion returns zero. Otherwise, it does not change the variable and returns a
negative error code.

Return Codes
-1260 It is not possible to convert between the specified types.
-1261 There are too many digits in the first datetime or interval field.
-1262 There is a non-numeric character in datetime or interval.
-1263 A field in a datetime or interval is out of range.
-1264 There are extra characters at the end of a datetime or interval.
-1265 Overflow occurred on a datetime or interval operation.
5-32

Example Call
-1266 A datetime or interval is incompatible for the operation.
-1267 The result of a datetime computation is out of range.
-1268 There is an invalid datetime qualifier.

Example Call
Here, the variable columbus is initialized to Columbus’s birthday, 1989:

$datetime year to day columbus;
dtcvasc("89-10-9",&columbus);

Example

/*
 * dtcvasc.ec *

 The following program converts ASCII datetime strings in ANSI SQL format
 into datetime (dtime_t) structure.
*/

#include <stdio.h>

$include datetime;

main()
{
 int x;
 $datetime year to second dt1;

 if (x = dtcvasc("1991-02-11 3:10:35", &dt1))
printf("Result #1 failed with conversion error: %d\n", x);

 else
printf("Result #1: successful conversion\n");

 /*
 * Note that the following literal string has a 26 in the hours place
 */
 if (x = dtcvasc("1991-02-04 26:10:35", &dt1))

printf("Error %d in converting 2nd datetime string\n", x);
 else

printf("Result #2: successful conversion\n");
}

5-33

Example Output
Example Output

Result #1: successful conversion
Error -1263 in converting 2nd datetime string
5-34

DTCVFMTASC
DTCVFMTASC

Purpose
The dtcvfmtasc function converts a string with a specified format to a
datetime value.

Syntax

int dtcvfmtasc(str, fmtstr, d)
char *str;
char *fmtstr;
dtime_t *d;

d is the address of a dtime_t variable with an initialized
qualifier.

fmtstr is the address of the format string, using the directives
defined for the DBTIME environment variable. If this argu-
ment is null, the function uses the format specified by
DBTIME.

str is the address of a string of digits and field delimiters.

Usage
The output variable must be initialized with the desired qualifier.

The input string can have leading and trailing spaces. However, from the first
significant digit to the last, the only characters accepted are digits and delim-
iters appropriate to the fields implied by the format string.

If the input string and the format specification are acceptable, the value is set
in the variable and the routine returns zero. Otherwise, an error code is
returned and the output variable contains an unpredictable value.

The output qualifier does not need to be identical to the input qualifier as
specified by the format string. When the output qualifier is different from the
input, dtcvfmtasc performs extensions as if dtextend had been called.

If fmtstr is null and DBTIME is not defined, the standard ANSI SQL format is
used. The input must have values for year to second in the ANSI SQL format.
5-35

Return Codes
All fields in the datetime/interval input string must be contiguous when call-
ing dtcvfmtasc(). In other words, if the qualifier is hour-to-second, all values
for hour, minute, and second must be specified somewhere in the string, or an
error results.

Return Codes
0 The conversion was successful.

<0 The conversion failed.

Example
Here the variable birthday is initialized to a fictional birthday party:

/*
 *The input and output qualifiers are the same (month
 *to minute) The variable ‘birthday’will be set to
 * “06-09 13:30”

 *Note the absence of field-width and precision specification
 * in the input format string.
 */
$datetime month to minute birthday;
dtcvfmtasc("June 9 at 01:30pm",

 "%B %d at %I:%M%p",
&birthday);

/*
 * The input and output qualifiers are different:
 * input qual: month to minute
 * output qual: year to minute
 *The variable 'birthday' wil be st to “XXXX-06-09 13:30”
 *Notice that the output has been extended, and the year
 *is set to the current year.
*/
$datetime year to minute birthday;
dtcvfmtasc("June 9 at 01:30pm","%B %d at %I:%M%p",

&birthday);
5-36

DTEXTEND
DTEXTEND

Purpose
The dtextend function copies a DATETIME value under a different qualifier.

Syntax

int dtextend(id,od)
dtime_t *id, *od;

id is the address of a variable to be copied.

od is the address of a variable with a valid qualifier.

Usage
The field digits of id are copied to od, with the copy controlled by the qualifier
of od.

Fields in id that are not included by the od qualifier are disregarded.

Fields in od that are not present in id are filled in as follows:

• Fields to the left of the most significant field in id are filled in from the cur-
rent time and date.

• Fields to the right of the least significant field in id are filled in with zeros.

Return Code
-1268 There is an invalid DATETIME qualifier.
5-37

Example Call
Example Call
In these statements, a variable xmas is set up with the date of Christmas for
the current year. The dtextend function is used to generate the current year.

$datetime work, xmas;
work.dt_qual = TU_DTENCODE(TU_MONTH,TU_DAY);
dtcvasc("12-25",&work);
xmas.dt_qual = TU_DTENCODE(TU_YEAR,TU_DAY);
dtextend(&work,&xmas);

Example

/*
 * dtextend.ec *

 The following program illustrates the results of datetime extension.
 The fields to the right are filled with zeros,
 and the fields to the left are filled in from current date and time.
*/

#include <stdio.h>

$include datetime;

main()
{
 int x;
 char month_str[20], year_str[20];
 $datetime month to day month_dt;
 $datetime year to minute year_min;

 /* Assign value to month_dt and extend */

 if(x = dtcvasc("12-07", &month_dt))
{
printf("Error %d in dtcvasc\n", x);
}

 else
{
if (x = dtextend(&month_dt, &year_min))
 printf("Error %d in datetime extension\n", x);
else
 {
 dttoasc(&month_dt, month_str);
 dttoasc(&year_min, year_str);
 printf("Value of month_dt is: %s\n", month_str);
 printf("Value of year_min (month_dt extended");
 printf(" from year to minute) is: %s\n", year_str);
 }
}

}

5-38

Example Output
Example Output

Value of month_dt is: 12-07
Value of year_min (month_dt extended from year to minute) is: 1991-12-07 00:00
5-39

DTTOASC
DTTOASC

Purpose
The dttoasc function converts the field values of a datetime variable to an
ASCII string that conforms to ANSI SQL standards.

Syntax

int dttoasc(d,str)
dtime_t *d;
char *str;

d is the address of an initialized dtime_t variable.

str is the address of space for a string.

Usage
The digits of the variable fields are converted to ASCII and copied to the out-
put with delimiters (hyphen, space, colon, or period) between them.

The output does not include the qualifier or the parentheses that are used to
delimit a DATETIME literal in an SQL statement.

The output includes one byte for each delimiter (hyphen, space, colon, or
period) plus the fields with the following sizes:

year four digits

fraction of DATETIME as specified by precision

all other fields two digits

The maximum length of output is produced from a DATETIME qualified as
year to fraction(5). It contains 19 digits, 6 delimiters, and the terminating null,
for a total of 26 bytes.

If the variable has not been initialized, the function returns an unpredictable
value, but one not exceeding 26 bytes.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
5-40

Example
Example

/*
 * dttoasc.ec *

 The following program illustates the conversion of a datetime value
 into an ASCII string in ANSI SQL format
*/

#include <stdio.h>

$include datetime;

main()
{
 char out_str[16];
 $datetime year to hour dt1;

 /* Initialize dt1 */
 dtcurrent(&dt1);

 /* Convert the internal format to ascii for displaying */
 dttoasc(&dt1, out_str);

 /* Print it out*/
 printf("\tThe value of dt1 (year to hour) is: %s\n", out_str);
}

Example Output

The value of dt1 (year to hour) is: 1991-10-26 14
5-41

DTTOFMTASC
DTTOFMTASC

Purpose
The dttofmtasc function converts a datetime variable to an ASCII string of a
specified format.

Syntax

int dttofmtasc(d,str,strlen,fmtstr)
dtime_t *d;
char *str;
int strlen;
char *fmtstr;

d is the address of an initialized dtime_t variable.

fmtstr is the address of the format string, using the directives defined
for the DBTIME environment variable. If this argument is null,
the function uses the format specified by DBTIME.

str is the address of space for the output string.

strlen is the length of str.

Usage
If the variable is not initialized, the function returns an unpredictable value.

The output does not include the qualifier or the parentheses that are used to
delimit a DATETIME literal in an SQL statement. The output format does not
need to be identical to the input qualifier. When the output qualifier is differ-
ent from the input qualifier, dttofmtasc performs extensions as if dtextend
were called.

If fmtstr is null and DBTIME is not defined, the standard ANSI SQL format is
used. In this instance, the dttofmtasc() routine sets the output to contain val-
ues for year to second in ANSI SQL format.
5-42

Return Codes
Return Codes
0 The conversion was successful.

<0 The conversion failed; check the text of the error message.

Example

/*
 * The input and output qualifiers are same (hour to second)
 */
$datetime hour to second x;
char buff[50];

/*
 * assume x is initialized to "01:30:20"
 * 'buff' will be set to "01 h 30 m 20 s"
 *
 * Use field-width specification to avoid leading zeros (E.g. %1H).
 */
dttofmtasc(&x, buff, sizeof(buff), "%H h %M m %S s");

/*
 * The input and output qualifiers are different
 * input qual : hour to second
 * output qual: year to second (ANSI SQL default qualifier)
 */
$datetime hour to second x;
char buff[50];

/*
 * assume x is initialized to "01:30:20"
 * 'buff' will be set to "XXXX-XX-XX 01:30:20"
 * Notice that the output has been extended, and year-month-day fields
 * are set to current year, month and day.
 */

dttofmtasc(&x, buff, sizeof(buff), (char *)0);
5-43

INCVASC
INCVASC

Purpose
The incvasc function converts a string that conforms to the ANSI SQL stan-
dard to an interval value.

Syntax

int incvasc(str,i)
char *str;
intrvl_t *i;

i is the address of an initialized intrvl_t variable.

str is the address of a string of digits and field delimiters.

Usage
The variable must be initialized to the desired qualifier.

The input string can have leading and trailing spaces. However, from the first
significant digit to the last, the only characters accepted are digits and delim-
iters appropriate to the fields implied by the qualifier.

If the input string is acceptable, the value is set in the variable and the func-
tion returns zero. Otherwise, the function does not change the variable and
returns a negative error code.

Return Codes
-1260 It is not possible to convert between the specified types.
-1261 There are too many digits in the first datetime or interval field.
-1262 There is a non-numeric character in datetime or interval.
-1263 A field in a datetime or interval is out of range.
-1264 There are extra characters at the end of a datetime or interval.
-1265 Overflow occurred on a datetime or interval operation.
-1266 A datetime or interval is incompatible for the operation.
-1267 The result of a datetime computation is out of range.
-1268 There is an invalid datetime qualifier.
5-44

Example
Example

/*
 * incvasc.ec *

 The following program converts ASCII strings into interval (intvl_t)
 strucure. It also illustrates error conditions involving invalid qualifiers
 for interval values.
*/

#include <stdio.h>

$include datetime;

main()
{
 int x;
 $interval day to second in1;

 if(x = incvasc("20 3:10:35", &in1))
printf("Result #1 failed with conversion error:%d\n",x);

 else
printf("Result #1: successful conversion\n");

 /*
 * Note that the following literal string has a 26 in the hours field
 */
 if(x = incvasc("20 26:10:35", &in1))

printf("Error %d in coverting interval #2\n", x);
 else

printf("Result #2: successful conversion\n");

 /*
 * Try to convert using an invalid qualifier (YEAR to SECOND)
 */
 in1.in_qual = TU_IENCODE(4, TU_YEAR, TU_SECOND);
 if(x = incvasc("1991-02-11 3:10:35", &in1))

printf("Error %d in coverting interval #3\n", x);
 else

printf("Result #3: successful conversion\n");
}

Example Output

Result #1: successful conversion
Error -1263 in coverting interval #2
Error -1268 in coverting interval #3
5-45

INCVFMTASC
INCVFMTASC

Purpose
The incvfmtasc() function converts a string with a specified format to an
interval value.

Syntax

int incvfmtasc(str,fmtstr, i)
char *str;
char *fmtstr;
intrvl_t *i;

fmtstr is the address of the format string, using the directives
defined for the DBTIME environment variable. If this argu-
ment is null, the function uses the format specified by
DBTIME.

i is the address of an initialized intrvl_t variable.

str is the address of a string containing the interval.

Usage
The output variable must be initialized with the desired qualifier.

If the input string is acceptable, the value is set in the variable and the func-
tion returns zero. Otherwise, the function returns an error code and the out-
put variable can contain unpredictable results.

If fmtstr is null, the function returns an error.

All fields in the datetime/interval input string must be contiguous when call-
ing incvfmtasc. In other words, if the qualifier is hour-to-second, all values for
hour, minute, and second must be specified somewhere in the string, or an
error results.

The output qualifier need not be identical to the input qualifier, as specified
by the format string. When the output qualifier is different from the input
qualifier, incvfmtasc converts the result to appropriate units. However, both
the input and the output must represent an interval with a span of year-to-
month or day-to-fraction.
5-46

Return Codes
The input string can have leading and trailing spaces. However, from the first
significant digit to the last, the only characters accepted are digits and delim-
iters appropriate to the fields implied by the format string.

The directives %B, %b and %p are not applicable in cvfmtasc(), since month
name and A.M./P.M. information is not useful for representing intervals of
time. Use the %Y directive if the interval is more than 99 years (%y can handle
only two digits). Use %H for hours (not %I, since %I can handle only 12
hours).

Return Codes
0 The conversion was successful.

<0 The conversion failed.

Example

/*
 * The input and output qualifiers are same (day to minute).
 * 'x' will be set to "20 03:40"
 *
 * Note the absence of field-width and precision specification
 * in the input format string.
 */
$interval day to minute x;
incvfmtasc("20 days, 3 hours, 40 minutes",

 "%d days, %H hours, %M minutes", &x);

/*
 * The input and output qualifiers are different
 * input qual : day to minute
 * output qual: hour to second
 */

/*
 * Since the expected number of digits in the first field is more than 2
 * declare the variable 'in' with some maximum width for hours [5].
 */
$interval hour(5) to second x;

/*
 * 'x' will be set to "483:40:00".
 * Notice that "20 days and 3 hours" have become "483 hours" and
 * seconds field has been set to "00".
 */
incvfmtasc("20 days, 3 hours, 40 minutes",

 "%d days, %H hours, %M minutes", &x);
5-47

INTOASC
INTOASC

Purpose
The intoasc function converts the field values of an interval variable to an
ASCII string that conforms to the ANSI SQL standard.

Syntax

int intoasc(i,str)
intrvl_t *i;
char *str;

i is the address of an initialized intrvl_t variable.

str is the address of space for a string.

Usage
The digits of the variable fields are converted to ASCII and copied to the out-
put with delimiters (hyphen, space, colon, or period) between them.

The output does not include the qualifier or the parentheses that are used to
delimit an interval literal in an SQL statement.

The output includes one byte for each delimiter (hyphen, space, colon, or
period) plus the fields with the following sizes:

leading field as specified by precision

fraction as specified by precision

all other fields two digits

The maximum length of output is produced from an interval qualified as
day(5) to fraction(5). It contains 16 digits, 4 delimiters, and the terminating
null, for a total of 21 bytes.

If the variable is not initialized, the function returns an unpredictable value,
but one not exceeding 21 bytes.

Return Codes
0 The conversion was successful.

<0 The conversion failed.
5-48

Example
Example

/*
 * intoasc.ec *

 The following program illustrates the conversion of an interval (intvl_t)
 into an ASCII string.
*/

#include <stdio.h>

$include datetime;

main()
{
 int x;
 char out_str[10];
 $interval day(3) to day in1;

 if(x = incvasc("3", &in1))
printf("Initial conversion failed with error: %d\n",x);

 else
{
/* Convert the internal format to ascii for displaying */
intoasc(&in1, out_str);
printf("The value of in1 is '%s'\n", out_str);
}

}

Example Output

The value of in1 is ' 3'
5-49

INTOFMTASC
INTOFMTASC

Purpose
The intofmtasc() function converts an interval variable to an ASCII string of
a specified format.

Syntax

intofmtasc(i,str,strlen,fmtstr)
intrvl_t *i;
char *str;
int strlen;
char *fmtstr;

i is the address of an initialized input intrvl_t variable.

fmtstr is the address of the format string, using the directives defined
for the DBTIME environment variable. If this argument is null,
the function uses the format specified by DBTIME.

str is the address of space for the output string.

strlen is the length of str.

Usage
The output does not include the qualifier or the parentheses that are used to
delimit an INTERVAL literal in an SQL statement.

The output qualifier need not be identical to the input qualifier, as specified
by the format string. When the output qualifier is different from the input
qualifier, intofmtasc() converts the result to appropriate units. However,
both the input and the output must represent an interval with a span of year-
to-month or day-to-fraction.

If the variable is not initialized, the function returns an unpredictable value.

If fmtstr is null, the intofmtasc() function returns an error.

The directives %B, %b and %p are not applicable in intofmtasc, since month
name and A.M./P.M. information is not useful for representing intervals of
time. Use the %Y directive if the interval is more than 99 years (%y can handle
only two digits). Use %H for hours (not %I, since %I can handle only 12
hours).
5-50

Return Codes
If the input value and the format specification are acceptable, the output
string is set and the function returns zero. Otherwise, the function returns an
error code and the output string can contain unpredictable results.

Return Codes
0 The conversion was successful.

<0 The conversion failed.

Example

/*
 * The input and output qualifiers are same (day to minute)
 */
$interval day to minute x;
charbuff[50];

/*
 * Assume that 'x' has been initialized to "20 3:40".
 * 'buff' will be set to "20 days, 3 hours and 40 minutes to go"
 */
intofmtasc(&x, buff, sizeof(buff),

 "%1d days, %1H hours and %1M minutes to go");

/*
 * The input and output qualifiers are different
 * input qual : day to minute
 * output qual: hour to second
 */
$interval day to minute x;
charbuff[50];

/*
 * Assume that 'x' has been initialized to "20 3:40".
 * 'buff' will be set to "483 hours 40 minutes and 0 seconds to go"
 *
 * Notice that "20 days and 3 hours" have become "483 hours" and
 * the seconds field has been set to zero.
 */
intofmtasc(&x, buff, sizeof(buff),

 "%1H hours, %1M minutes and %1S seconds to go");
5-51

Example
5-52

Chapter
6

Working with
Binary Large
Objects
Chapter Overview 3

Programming with Blobs 3
Fields Common to All Data Locations 5
Locating Blobs in Memory 6
Reading a Blob into Memory 7
Writing a Blob from Memory 9
Locating Blobs in Open Files 10

Reading a Blob into an Open File 11
Writing a Blob from an Open File 12

Locating Blobs in Named Files 14
Reading a Blob into a Named File 15
Writing a Blob from a Named File 16

User-Programmed Location 17
User-Programmed Open Function 17
User-Programmed Close Function 18
User-Programmed Read Function 18
User-Programmed Write Function 19

LOC_DESCRIPTOR 19

Guide to dispcat_pic 22
Before Using dispcat_pic 22
Using the Conditional Display Logic 23
Loading the cat_picture Column 23
Using blobload 24
The dispcat_pic Program 26

6-2

Chapter Overview
This chapter covers the following topics:

• Programming with binary large objects (blobs)

• The locator structure

• Locating blobs in memory

• Locating blobs in an open file

• Locating blobs in a named file

• Locating blobs with user-written code

This chapter also contains an annotated example program that reads the
cat_descr and cat_picture blob columns from the catalog table of the stores5
database.

For information about the data types available in an INFORMIX-ESQL/C pro-
gram, see Chapter 2 of this manual. For information about the TEXT and
BYTE blob data types, as well as other SQL data types, see Chapter 3 of The
Informix Guide to SQL: Reference.

Programming with Blobs
In an ESQL/C program, you use a locator structure to read or write blobs—
columns having a TEXT or BYTE data type. The locator structure does not con-
tain the blob data; it contains information about the size and location of the
blob data. It is the host variable for TEXT and BYTE columns when they are
stored in or retrieved from the database. It describes the source location when
blob data is inserted into the database and it describes the destination when
blob data is fetched.
6-3

Programming with Blobs
The locator structure is defined in the locator.h header file. The following
comments in the locator.h file specify the use of fields in the locator structure:

USER indicates that the field is set by the user and inspected by the
database server.

SYSTEM indicates that the field is set by the database server and
inspected by the user.

INTERNAL indicates that the field is a work area for the database server.

Note that a portion of the locator structure is a union (overlapping variant
structures). The variant in use depends on whether the object is located in
memory or a file. You specify whether the object is located in memory or in a
file by specifying the contents of the loc_loctype field.

Figure 6-1 shows the definition of the locator structure as it appears in the
locator.h file. Notice the additional comments in the file itself.

typedef struct
 {
 short loc_loctype; /* USER: type of locator - see below */
 union /* variant on 'loc' */
 {
 struct /* case LOCMEMORY */
 {
 long lc_bufsize; /* USER: buffer size */
 char *lc_buffer; /* USER: memory buffer to use */
 char *lc_currdata_p;/* INTERNAL: current memory buffer */
 int lc_mflags; /* INTERNAL: memory flags (see below) */
 } lc_mem;

 struct /* cases L0CFNAME & LOCFILE */
 {
 char *lc_fname; /* USER: file name */
 int lc_mode; /* USER: perm. bits used if creating */
 int lc_fd; /* USER: os file descriptior */
 long lc_position; /* INTERNAL: seek position */
 } lc_file;
 } lc_union;

 long loc_indicator; /* USER SYSTEM: indicator */
 long loc_type; /* SYSTEM: type of blob */
 long loc_size; /* USER SYSTEM: num bytes in blob or -1 */
 int loc_status; /* SYSTEM: status return of locator ops */
 char *loc_user_env; /* USER: for the user's PRIVATE use */
 long loc_xfercount; /* INTERNAL/SYSTEM: Transfer count */

 int (*loc_open)(); /* USER: open function */
 int (*loc_close)(); /* USER: close function */
 int (*loc_read)(); /* USER: read function */

 int (*loc_write)(); /* USER: write function */

 int loc_oflags; /* USER/INTERNAL: see flag definitions below */
 } loc_t;

#define loc_fname lc_union.lc_file.lc_fname
6-4

Fields Common to All Data Locations
#define loc_fd lc_union.lc_file.lc_fd
#define loc_position lc_union.lc_file.lc_position
#define loc_bufsize lc_union.lc_mem.lc_bufsize
#define loc_buffer lc_union.lc_mem.lc_buffer
#define loc_currdata_p lc_union.lc_mem.lc_currdata_p
#define loc_mflags lc_union.lc_mem.lc_mflags

/* Enumeration literals for loc_loctype */

#define LOCMEMORY 1 /* memory storage */
#define LOCFNAME 2 /* File storage with file name */
#define LOCFILE 3 /* File storage with fd */
#define LOCUSER 4 /* User define functions */

/* passed to loc_open and stored in loc_oflags */
#define LOC_RONLY 0x1 /* read only */
#define LOC_WONLY 0x2 /* write only */

/* LOC_APPEND can be set when the locator is created
 * if the file is to be appended to instead of created
 */
#define LOC_APPEND 0x4 /* write with append */
#define LOC_TEMPFILE 0x8 /* 4GL tempfile blob */

/* LOC_USEALL can be set to force the maximum size of the blob to always be
 * used when the blob is an input source. This is the same as setting the

 * loc_size field to -1. Good for LOCFILE or LOCFNAME blobs only.
 */
#define LOC_USEALL 0x10 /* ignore loc_size field */
#define LOC_DESCRIPTOR 0x20 /* BLOB is optical descriptor */

/* passed to loc_open and stored in loc_mflags */
#define LOC_ALLOC 0x1 /* free and alloc memory */

#endif /* LOCATOR_INCL */

Figure 6-1 Locator structure

Fields Common to All Data Locations
The following fields are common to all data locations:

loc_indicator

A value of -1 in the loc_indicator field indicates a null value. The program
can set it when storing a null; the database server sets it on a fetch.

loc_status

The database server sets the loc_status field to zero when an operation is suc-
cessful and returns a negative value when an error occurs.
6-5

Locating Blobs in Memory
loc_type

The loc_type field specifies whether the variable is TEXT (SQLTEXT) or BYTE
(SQLBYTES) type.

Locating Blobs in Memory
If you set loc_loctype to LOCMEMORY, the TEXT or BYTE data is stored in
primary memory. The memory buffer is addressed by loc_buffer and
loc_bufsize gives its size.

The loc_size field contains the size of the data in bytes or the value -1. The
program sets loc_size when storing a blob to the database; the database
server sets loc_size after fetching.

If loc_bufsize is set to -1 when the locator is used for a fetch, the database
server uses malloc() to obtain memory to hold the data and sets loc_buffer
and loc_bufsize in addition to loc_size. If you perform subsequent fetches
and the size of the data increases, the existing buffer is freed and the neces-
sary memory is allocated. This alters the memory address at which the blob
is stored, so if you reference the address in your programs, your program
logic must account for the address change.

If the data does not fit in a size of loc_bufsize on a fetch or select, loc_status
is set to a negative return code and the actual size of the data is set in
loc_indicator. If loc_bufsize is less than loc_size when a value is stored in the
database, an error is returned.

Initialize loc_oflags with the proper flags, usually 0. Figure 6-1 lists possible
values.
6-6

Reading a Blob into Memory
Reading a Blob into Memory
The following code excerpt from getcd_me reads the cat_descr TEXT column
of the catalog table into memory and then displays it:

$long cat_num;
$loc_t cat_descr;
-
-
-
/*
 Prepare locator structure for select of cat_descr
*/
 cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_descr.loc_bufsize = -1; /* let db get buffer */
 cat_descr.loc_oflags = 0; /* clear loc_oflags */
 $select catalog_num, cat_descr /* look up catalog number */
 into $cat_num, $cat_descr from catalog
 where catalog_num = $cat_num;

if(!err_chk("Select")) /* if not found */
 {
 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
 if(!more()) /* More to do? */
 break; /* no, terminate loop */
 else

continue; /* yes */
 }

prdesc(); /* if found, print cat_descr */

The program sets loc_loctype to LOCMEMORY so that the database server
returns the cat_descr text in a memory buffer. The program sets loc_bufsize
to -1 so that the database server allocates the memory for the buffer. The pro-
gram also sets loc_oflags to 0 because it does not use a file. The program calls
prdesc() to display the text returned by the SELECT statement. The prdesc()
function in the following example sets a pointer, p, to the address that is
returned in loc_buffer. The size of the buffer is returned in loc_bufsize.
6-7

Reading a Blob into Memory
/* prdesc() prints cat_desc for a row in the catalog table */

prdesc()
{
 long size;
 char shdesc[81], *p;

 size = cat_descr.loc_size; /* get size of data */
 printf("\nDescription for %ld:\n", cat_num);
 p = cat_descr.loc_buffer; /* set p to buffer addr */
 /*
 print buffer 80 characters at a time
 */
 while(size >= 80)
 {
 ldchar(p, 80, shdesc); /* mv from buffer to shdesc */
 printf("\n%80s", shdesc); /* display it */
 size -= 80; /* decrement length */
 p += 80; /* bump p by 80 */
 }
 strncpy(shdesc, p, size);
 shdesc[size] = '\0';
 printf("%-s\n", shdesc); /* display last segment */
}

The following command runs getcd_me for the stores5 database. It displays
the cat_descr column for a catalog number that the user inputs. The user’s
input and the resulting output from cat_descr are shown in the following
example:

% getcd_me

database stores5 . . .
 Enter cat_num: 10004

Description for 10004:
Jackie Robinson signature glove. Highest professional quality, used by National
League.

 More? (y/n) . . .
6-8

Writing a Blob from Memory
Writing a Blob from Memory
The updcd_me program updates the cat_descr TEXT column of the catalog
table from a memory buffer containing text that the user inputs. You can run
the updcd_me program and input text to update the cat_descr column as
shown in the following example:

% updcd_me

database: stores5 ...
 Enter cat_num: 10004

Description for 10004:

Jackie Robinson signature ball. Highest professional quality, used by National
League.

Update? (y/n) . . .y

 Enter description (255 chars):
 Jackie Robinson home run ball, signed, 1955.

 More? (y/n) . . .n

The following code excerpt illustrates how updcd_me uses the locator struc-
ture to update cat_descr from the text that is stored in memory:

$long cat_num;
$loc_t cat_descr;
-
-
-
 /*
 Update?
 */
 while((ans[0] = LCASE(ans[0])) != 'y' && ans[0] != 'n')
 {
 printf("\n\tUpdate? (y/n) . . ."); /* update description? */
 getans(ans, 1);
 }
 if(ans[0] == 'y') /* if yes */
 {
 printf("\n\tEnter description (%d chars):\n\t", BUFFSZ - 1);
 /* Enter description */
 getans(ans, BUFFSZ - 1);

cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_descr.loc_buffer = ans; /* set buffer addr */

 cat_descr.loc_bufsize = BUFFSZ; /* set buffer size */
 /* set size of data */
 cat_descr.loc_size = strlen(ans) + 1;
 /* Update */
 $update catalog set cat_descr = $cat_descr
 where catalog_num = $cat_num;
6-9

Locating Blobs in Open Files
The program calls getans() to copy the user’s input into an ans array and then
moves the address of the array to loc_buffer. The program moves the size of
the buffer (BUFFSZ) into loc_bufsize, the size of the blob (strlen(ans)) into
loc_size, and then performs the update.

The following code excerpt illustrates the use of a locator structure in an
INSERT statement:

$char name[20];
$loc_t photo;

photo.loc_loctype = LOCMEMORY; /* Photo resides in memory */
photo.lc_buffer = photo_ptr; /* pointer to where it is */
photo.loc_size = photo_len; /* length of image*/

$ INSERT INTO employee (name, badge_pic)
VALUES ($name, $photo);

Locating Blobs in Open Files
If you set loc_loctype to LOCFILE, the blob data is located in a file that your
program opened. The file descriptor of the open file is specified in loc_fd. The
database server reads or writes the data from the current location in the file.
When using an open file, you must place the host system file-open mode
flags in loc_oflags using LOC_RONLY, LOC_WONLY, or LOC_APPEND.

When the database server stores data to the database from an open file, it
reads loc_size bytes or to the end of the file, if loc_size contains -1. When
fetching from the database, the database server writes all the data and sets the
length in loc_size.
6-10

Locating Blobs in Open Files
Reading a Blob into an Open File

The following code excerpt from the getcd_of program selects the cat_descr
column into the file named by argv[2]:

$char db_stmnt[250];

$long cat_num;
$short stock_num;
$char manu_code[4];
$loc_t cat_descr;
$loc_t cat_picture;
$varchar cat_advert[256];
-
-
-

if ((fd = open(argv[2], O_WRONLY)) < 0) /* open output file */
 {
 printf("\nCan't open file: %s\n", argv[1]);
 exit(1);
 }
 if(rstol(argv[1], &cat_num)) /* cat_num string to long */
 {
 printf("\nUsage: prog dbname cat_num file_name\n-Illegal cat_num");
 exit(1);
 }
 /*
 Prepare locator structure for select of cat_descr
 */
 cat_descr.loc_loctype = LOCFILE; /* set type to open file */
 cat_descr.loc_fd = fd; /* supply file descriptor*/
 cat_descr.loc_oflags = LOC_APPEND; /* set file-open mode write */
 $select catalog_num, cat_descr /* verify catalog number */
 into $cat_num, $cat_descr from catalog
 where catalog_num = $cat_num;
 if(!err_chk("Select")) /* if error, display and quit */
 {
 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
 exit();
 }
 exit();

The getcd_of program opens the file that is named by the third argument on
the command line. It then converts the catalog number, given as argv[1], to a
long integer to match it against the catalog_num column of the catalog table.
To prepare the locator structure for the SELECT statement, getcd_of moves
LOCFILE to loc_loctype to tell the database server to place the text for
cat_descr in the open file. It moves LOC_APPEND to loc_oflags to specify that
the data should be appended to any existing data in the file.
6-11

Locating Blobs in Open Files
Writing a Blob from an Open File

The updcd_of program updates the cat_descr column from text located in an
open file. The input file for updcd_of contains a series of records, each one
consisting of a catalog number and the associated text to update the cat_descr
column. The input file is organized as follows:

\10001\
Dark brown leather first baseman's mit. Specify right-handed or left-handed.

\10002\
Babe Ruth signature glove. Black leather. Infield/outfield style. Specify right-
 or left-handed.
-
-

6-12

Locating Blobs in Open Files
The following code excerpt from updcd_of illustrates the use of the locator
structure to update the cat_descr column of the catalog table from an open
file:

$long cat_num;
$short stock_num;
$char manu_code[4];
$loc_t cat_descr;
$loc_t cat_picture;
$varchar cat_advert[256];
-
-
-
if ((fd = open(argv[1], O_RDONLY)) < 0) /* open input file */
 {
 printf("\nCan't open file: %s\n", argv[1]);
 exit(1);
 }
 while(getcat_num(fd, line, sizeof(line))) /* get cat_num line from file */
 {
 line[6] = '\0'; /* replace / with null */
 rstol(&line[1], &cat_num); /* cat_num string to long */
 flpos = lseek(fd, 0L, 1);
 length = getdesc_len(fd);
 flpos = lseek(fd, flpos, 0);
 /*
 lookup cat_num in catalog table
 */
 $select catalog_num into $cat_num from catalog
 where catalog_num = $cat_num;
 if(!err_chk("Select")) /* if not found */
 {
 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
 -
-
-
-
/*
 if found
*/
 cat_descr.loc_loctype = LOCFILE; /* update from open file */
 cat_descr.loc_fd = fd; /* load file descriptor */

cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
 cat_descr.loc_size = length; /* set size of blob */
 /*
 update cat_descr column of catalog table
 */
 $update catalog set cat_descr = $cat_descr
 where catalog_num = $cat_num;
 err_chk("Update");
 }
 $close database;

The updcd_of program opens the input file named by argv[1], calls
getcat_num() to read a catalog number, and then calls getdesc() to determine
the length of the text that updates cat_descr. The program then performs a
select to verify that the catalog number exists in the catalog table. If it does,
updcd_of prepares the locator structure to update cat_descr from the text in
6-13

Locating Blobs in Named Files
the open file. It sets loc_loctype to LOCFILE to inform the database server that
cat_descr is to be updated from an open file. The program then moves fd, the
file descriptor for the input file, to loc_fd, and sets loc_oflags to LOC_RONLY,
the file-open-mode flag for read-only. Finally, it moves length, the length of
the incoming text for cat_descr, to loc_size, and performs the update.

Locating Blobs in Named Files
If you set loc_loctype to LOCFNAME, the database server locates the blob
data in a file specified by name. To provide the database server with the name
of the file, place the address of the pathname string in loc_fname. You must
also set the host system file-open-mode flags in loc_oflags using
LOC_RONLY, LOC_WONLY, or LOC_APPEND. The database server opens the
file per the mode flags, sets loc_fd, and then proceeds as if the file were
opened by your program. When the database server stores data to the named
file, it reads loc_size bytes or to the end of the file, if loc_size contains -1.
Fetching a null (or empty) blob column into a named file that already exists
truncates the file.
6-14

Locating Blobs in Named Files
Reading a Blob into a Named File

The following code excerpt from getcd_fn executes a select to read the
cat_descr TEXT column from the catalog table and write it to the file named
by the third argument on the command line, argv[2]:

$long cat_num;
$loc_t cat_descr;
-
-
-
 if(argc == 4)
 {
 sprintf(db_stmnt, "database %s", argv[1]);
 printf("\n%s", db_stmnt);
 $prepare open_db from $db_stmnt;
 err_chk("prepare database");
 $execute open_db;
 err_chk(db_stmnt);
 ++argv;
 }
 else
 {
 $database stores5;
 err_chk("database");
 printf("\nOpening database: stores2");
 }
 if(rstol(argv[1], &cat_num)) /* cat_num string to long */
 {
 printf("\nUsage: prog cat_num file_name\n-Illegal cat_num");
 exit(1);

 /*
 Prepare locator structure for select of cat_descr
 */
 cat_descr.loc_loctype = LOCFNAME; /* set loctype for in memory */
 cat_descr.loc_fname = argv[2]; /* load the addr of file name */
 cat_descr.loc_oflags = LOC_APPEND; /* set loc_oflags to append */
 $select catalog_num, cat_descr /* verify catalog number */
 into $cat_num, $cat_descr from catalog
 where catalog_num = $cat_num;
 if(!err_chk("Select")) /* if error, display and quit */
 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
 $close database;
}

The getcd_fn program either opens the database named on the argv[1] com-
mand line, if one is given, or it opens the stores5 database. Next, it converts
the catalog number from the argv[1] command line to a long integer, the data
type of the catalog_num column. Then, it prepares the locator structure for
cat_descr. It moves LOCFNAME to cat_descr.loc_loctype to tell INFOR-
MIX-OnLine to place the contents of cat_descr in the file named in argv[2]. It
moves LOC_APPEND to cat_descr.loc_oflags, the file-open-mode flags, to tell
INFORMIX-OnLine to append it to the existing file. Then, the program exe-
cutes the select to retrieve the row.
6-15

Locating Blobs in Named Files
Writing a Blob from a Named File

The following code excerpt from the updcd_nf program updates the
cat_descr column in the catalog table from text in a named file:

$long cat_num;
$loc_t cat_descr;

-
-
-

cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_descr.loc_bufsize = -1; /* let server get memory */
 $select catalog_num, cat_descr /* verify catalog number */
 into $cat_num, $cat_descr from catalog
 where catalog_num = $cat_num;
 if(!err_chk("Select")) /* if error, display and quit */
 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
 prdesc(); /* print current cat_descr */
/*
 Update?

*/
 while((ans[0] = LCASE(ans[0])) != 'y' && ans[0] != 'n')
 {
 printf("\n\tUpdate? (y/n) . . .");
 scanf("%1s", ans);
 }
 if(ans[0] == 'y')
 {
 cat_descr.loc_loctype = LOCFNAME; /* set type to named file */
 cat_descr.loc_fname = argv[2]; /* supply file name */

cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
 $update catalog

 set cat_descr = $cat_descr /* update cat_descr column */
 where catalog_num = $cat_num;
 err_chk("Update"); /* check status */
 }

The updcd_nf program first performs a select for the catalog number given by
the user as the second argument on the argv[1] command line. The select
returns the catalog_num and cat_descr columns. The prdesc() function then
displays the current content of cat_descr. The program asks whether the user
wants to update the description. If the user answers yes (ans[0] == 'y'),
updcd_nf prepares the locator structure to update cat_descr from the text in
the file named by the third argument on the argv[2] command line. The pro-
gram sets cat_descr.loc_loctype to LOCFNAME to indicate that the source of
the update text is a named file. It sets cat_descr.loc_fname to argv[2] and then
sets cat_descr.loc_oflags to LOC_RONLY to tell INFORMIX-OnLine to open
the file in read-only mode. Then it performs the update.
6-16

User-Programmed Location
The following example shows the command to run the updcd_nf program.
The command line specifies the catalog number for the row to be updated
and the name of the file that stores the update text. The program displays the
current contents of the cat_descr column and asks whether the user wants to
update the column.

% updcd_nf 10002 catdescr

 database stores5 ...

Description (catalog_num: 10002):
Babe Ruth signature glove. Black leather.

 Update? (y/n) . . .y
%

The contents of the catdescr file are as follows:

Babe Ruth signature glove. Black leather. Infield/outfield style. Specify right-
or left-handed.

User-Programmed Location
You can set loc_loctype to LOCUSER so that the C functions that you supply
in your ESQL/C program completely control the blob data. In loc_open,
loc_close, loc_read, and loc_write, you supply the addresses of functions to
open, close, read and write the data. The database server then calls these
functions, as required, to handle the data.

Each of the functions receives the address of the loc_t structure as its first or
only parameter. You can use the loc_usr_env field for these functions. For
example, you can set loc_usr_env to the address of a common work area. In
addition, the loc_xfercount and all the fields of the loc_union substructure
are available for these functions.

User-Programmed Open Function

The following skeleton function is an example of a user-programmed open
function. The open function receives two parameters from the database
server: the address of the locator structure, loc_t, and a flag that contains
6-17

User-Programmed Location
LOC_RONLY if the database server sends input to the database, or
LOC_WONLY if the database server sends output, or fetches, from the data-
base. The function returns 0 for success and -1 for failure.

openblob(adloc, oflags)
loc_t*adloc;
int oflags;

{
adloc->loc_status = 0;
adloc->loc_xfercount = 0L;
if (0==(oflags & adloc->loc_oflags))

return(-1);
if (oflags & LOC_RONLY)

/*** prepare for store to db ***/
else

/*** prepare for fetch to program ***/
return(0);

}

User-Programmed Close Function

When a transfer to or from the database server is complete, the close function
that you supply is called. The following skeleton function is an example of a
user-programmed close function. It sets the status in the loc_status field of
the locator structure and sets the number of bytes transferred into loc_size.

closeblob (adloc)
loc_t*adloc;

{
adloc->loc_status = 0;
if (adloc->loc_oflags & LOC_WONLY) /* if fetching */
{

adloc->loc_indicator = 0; /* clear indicator */
adloc->loc_size = adloc->loc_xfercount;

}
return(0);

}

User-Programmed Read Function

To store data in the database, the database server calls on the supplied read
function for data. The read function receives three arguments: the address of
the locator structure, the address of the buffer to receive the data from your
program, and the number of bytes to read. The database server takes data in
segments of some maximum size until it reads all the data. You set the size of
the data in loc_size when you set up the locator structure for the blob col-
umn. If the program set loc_size to -1, the database server reads in data until
the read function returns an end-of-file (EOF) signal. The read function must
return the count of bytes it transferred. When the count is not equal to the
6-18

LOC_DESCRIPTOR
number of bytes requested, the database server assumes an EOF signal. The
following skeleton function is an example of a user-programmed read
function:

readblob(adloc, bufp, ntoread)
loc_t*adloc;
char*bufp;
int ntoread;

{
int ntoxfer;

ntoxfer = ntoread;
if (adloc->loc_size != -1)

ntoxfer = min(ntoread,
adloc->loc_size - adloc->loc_xfercount);

/*** transfer "ntoread" bytes to *bufp ***/

adloc->loc_xfercount += ntoxfer;
return(ntoxfer);

}

User-Programmed Write Function

To fetch data from the database, the database server calls on the write func-
tion that you supplied to dispose of the data. The function receives three
parameters from the database server: the address of the locator structure, the
address of the buffer where the data is stored, and the number of bytes to
write. The database server can call the function more than once per data item,
receiving the address and length of a segment of data each time. Returning a
non-zero value indicates an error. The following skeleton function is an
example of a user-programmed write function:

writeblob(adloc, bufp, ntowrite)
loc_t*adloc;
char*bufp;
int ntowrite;

{
/*** transfer ntowrite bytes from *bufp ***/
adloc->loc_xfercount += ntowrite;
return(0);

}

LOC_DESCRIPTOR
When reading or writing a blob column that is stored on a write-once-read-
many (WORM) optical disk, you can manipulate only the blob descriptor by
setting loc_oflags to LOC_DESCRIPTOR. LOC_DESCRIPTOR should only be
used in conjunction with blobs that are stored on WORM optical media.
6-19

LOC_DESCRIPTOR
Data rows that include blob data do not include the blob data in the row itself.
Instead, the data row contains a 56-byte blob descriptor that includes a for-
ward pointer (rowid) to the location where the first segment of blob data is
stored. The descriptor can point to a dbspace blob-page, a blobspace blob-
page, or a platter in an optical storage subsystem. See The INFORMIX-OnLine
Administrator’s Guide for details.

When a blob is stored on a WORM optical-storage subsystem, you can con-
serve storage space on the WORM optical disk by having a single physical
blob reside in more than one table. The LOC_DESCRIPTOR flag allows you to
do this by enabling you to migrate a blob descriptor, rather than the blob
itself, from one table to another.

The following example selects the stock_num, manu_code, cat_descr, and
cat_picture columns from the catalog table of the named database. The pro-
gram uses the descr function expression to retrieve the blob descriptor, rather
than the blob itself, for the cat_picture column. It then sets LOC_DESCRIPTOR
in the loc_oflags of the cat_picture locator structure to signal that the blob
descriptor, rather than the blob, is to be inserted into the cat_picture column
of the pictures table. The result is that the cat_picture columns in both the
catalog and pictures tables refer to a single set of physical blobs.

#include <stdio.h>
$include locator.h;

$char db_stmnt[250];

char errmsg[400];

$long cat_num;
$short stock_num;
$char manu_code[4];
$loc_t cat_descr;
$loc_t cat_picture;
$varchar cat_advert[256];

main(argc, argv)
int argc;
char *argv[];
{
 if (argc > 2) /* correct no. of args? */
 {
 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
 argv[0]);
 exit(1);
 }
 if(argc == 2)
 {
 sprintf(db_stmnt, "database %s", argv[1]);
 printf("\n%s", db_stmnt);
 $prepare open_db from $db_stmnt;
 err_chk("prepare database");
 $execute open_db;

else
 {
6-20

LOC_DESCRIPTOR
 $database stores5;
 err_chk("database");
 printf("\nOpening database: stores5");
 }
 $declare catcurs cursor for /* setup cursor for select */
 select stock_num, manu_code, cat_descr, descr(cat_picture)
 from catalog where cat_picture is not null;
 /*
 Prepare locator structures cat_descr(TEXT blob) and
 cat_picture (TEXT blob that is the blob descriptor).
 */
 cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_picture.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 while(1)
 {
 /*
 Let db get buffers and set loc_buffer (buffer for blob descriptor)
 and loc_bufsize (size of buffer)
 */
 cat_descr.loc_bufsize = -1;
 cat_picture.loc_bufsize = -1;
 /*
 Select row from catalog table (descr() returns TEXT blob descriptor
 for cat_picture. For cat_descr, the actual blob is returned.)
 */
 $fetch catcurs into $stock_num, $manu_code, $cat_descr,
 $cat_picture;

if(!err_chk("Fetch")) /* end of data */
 break;
 /*
 Set LOC_DESCRIPTOR in loc_oflags to indicate blob descriptor
 is being inserted rather than blob data.
 */
 cat_picture.loc_oflags |= LOC_DESCRIPTOR;
 /*
 Insert
 */
 $insert into pictures values ($stock_num, $manu_code,
 $cat_descr, $cat_picture);
 err_chk("Insert");
 printf("Insert failed for stock_num %d, manu_code %s", stock_num,
 manu_code);
 }
}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode < 0)
 {
 rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
 printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);

 exit(1);
 }
 return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
}

6-21

Guide to dispcat_pic
Note: Rarely must you set loc_oflags to LOC_DESCRIPTOR. You can achieve the
same result without setting loc_oflags to LOC_DESCRIPTOR. The following SQL
statement accomplishes the same task as the preceding example.

$INSERT INTO pictures (stock_num, manu_code, cat_descr, cat_picture)
SELECT stock_num, manu_code, cat_descr, DESCR(cat_picture)
FROM catalog
WHERE cat_picture IS NOT NULL

Guide to dispcat_pic
The dispcat_pic program annotated on the following pages uses the ESQL/C
loc_t locator structure to retrieve two blob columns. The program retrieves
the cat_descr TEXT blob column and the cat_picture BYTE blob column from
the catalog table of the stores5 demonstration database. See “The Demonstra-
tion Database” in the Introduction for information on creating the demon-
stration database.

The dispcat_pic program allows you to select a database from the command
line in case you created the stores5 database under a different name. If no
database name is given, dispcat_pic opens the stores5 database. The pro-
gram prompts the user for a catalog_num value and performs a select to read
the description column from the stock table and the catalog_num, cat_descr,
and cat_picture columns from the catalog table. If the database server finds
the catalog number and the cat_picture column is not null, it writes the
cat_picture column to a temporary file. If the program is compiled with the
conditional cat_picture display logic, the program forks a second process and
executes a SUN screenload system utility to display the raster image from the
temporary file. In all cases, if the select succeeds, the program displays the
catalog_num, cat_descr, and description columns. Finally, the program
deletes the temporary file it created for cat_picture and allows the user to
enter another catalog_num value or terminate the program.

Before Using dispcat_pic
The dispcat_pic source program is provided with INFORMIX-ESQL/C in the
$INFORMIXDIR/esqlc/demo directory so that you can compile and run it.
The program includes conditional display logic to illustrate the logic you can
use to display a graphic image from a BYTE type column. As provided, how-
ever, the conditional logic can only display the content of the cat_picture col-
umn on a Sun workstation, using the Sun screenload utility program. To
display the cat_picture column on another ESQL/C platform, you must sub-
6-22

Using the Conditional Display Logic
stitute display logic that runs on that platform. If the program is compiled
normally, without the conditional display logic, the executable program dis-
plays only the catalog_num and cat_descr columns from the catalog table
and the description column from the stock table of the stores5 database.
Since these columns store text, they can be displayed on any ESQL/C
platform.

Use the following command to compile dispcat_pic without the conditional
display logic:

esql -o dispcat_pic dispcat_pic.ec

The -o dispcat_pic option causes the executable program to be named
dispcat_pic. Without the -o option, the name of the executable program
defaults to a.out. See “Compiling INFORMIX-ESQL/C Programs” on page
1-20 for more information on the esqlc preprocessor command.

Using the Conditional Display Logic
Use the following command to compile dispcat_pic with the conditional
cat_picture display logic for a Sun workstation:

esql -o dispcat_pic -DSUNVIEW dispcat_pic.ec

The -DSUNVIEW option causes the conditional display logic to be compiled.
The -o dispcat_pic option causes the resulting executable program to be
named dispcat_pic. Without the -o dispcat_pic option, the name of the pro-
gram defaults to a.out. See “Compiling INFORMIX-ESQL/C Programs” on
page 1-20 for more information on the esqlc preprocessor command.

Note: For simplicity, the program is not designed to display the cat_picture raster
image under SunView or any other windowed environment. If you are displaying the
cat_picture column, for best results, the program should be run directly from the
SunOS command line, not through the window manager.

Loading the cat_picture Column
When the catalog table is created as part of the stores5 demonstration data-
base, the cat_picture column for all rows is set to null. INFORMIX-ESQL/C
provides five graphic images and the blobload.ec program to load five rows
of the catalog table with graphic images that can be displayed. The images
must be loaded to the cat_picture BYTE column.
6-23

Using blobload
Informix provides the five cat_picture images in two formats: Sun raster
image format (.rs files) and Graphics Interchange Format (.gif files). If you
are compiling dispcat_pic.ec with the conditional display logic, you must use
the Sun raster image files to load the five cat_picture columns. The names of
the raster image files and the images that they contain are as follows:

Image File Image
cn_10001.rs baseball glove
cn_10027.rs bicycle crankset
cn_10031.rs bicycle helmet
cn_10046.rs golf balls
cn_10049.rs running shoe

The numeric portion of the image filename is the catalog_num value for the
row of the catalog table to which the image should be updated. For example,
cn_10027.rs should be updated to the cat_picture column of the row where
10027 is the value of catalog_num.

ESQL/C also provides the images in .gif files to provide them in a standard
format that can be displayed on other ESQL/C platforms or translated into
other formats using filter programs supplied by other vendors. The names of
the .gif image files and the images they contain are as follows:

Image File Image
cn_10001.gif baseball glove
cn_10027.gif bicycle crankset
cn_10031.gif bicycle helmet
cn_10046.gif golf balls
cn_10049.gif running shoe

Note: The dispcat_pic program, as delivered, only displays Sun raster images. To
display the Graphics Interchange Format, or any other format, you must modify
dispcat_pic, substituting display logic for the format you are using.

Using blobload
Prior to running dispcat_pic to display these images, you must perform the
following steps to load the images to the catalog table:

1. Compile the blobload.ec program.

Use the following command to compile the blobload program:

esql -o blobload blobload.ec
6-24

Using blobload
2. Run the blobload program to load each image to its proper cat_picture
column.

Enter blobload on the UNIX command line without any arguments, as
follows:

blobload

This displays the following message that describes the command-line argu-
ments that blobload expects:

Sorry, you left out a required parameter.

Usage: blobload {-i | -u} -- choose insert or update

 -f filename -- file containing the blob data

 -d database_name -- database to open

 -t table_name -- table to modify

 -b blob_column -- name of target column

 -k key_column key_value -- name of key column and a value

 -v -- verbose documentary output

All parameters except -v are required.

Parameters may be given in any order.

As many as 8 -k parameter pairs may be specified.

Run blobload with the -u option to update the Sun raster images to the
catalog table. Run the blobload program once for each image file that you
want to update. For example, the following command loads the content of
cn_10027.rs into the cat_picture column of the row for catalog_num 10027.
The catalog_num column is the key column in the catalog table.

blobload -u -f cn_10027.rs -d stores5 -t catalog -b cat_picture -k catalog_num
10001

Use the same command to update each of the four remaining image files, sub-
stituting the name and corresponding catalog_num value of the image file
that you want to load.

You can use the blobload program to load the .gif files to the catalog table in
the same manner that it is used to load the .rs files.
6-25

The dispcat_pic Program
The dispcat_pic Program

1 #include <stdio.h>
2 $include sqltypes.h;
3 $include locator.h;
4
5 #define LCASE(c) (isupper(c) ? tolower(c) : c)
6 #define BUFFSZ 256
7
8 extern int errno
9
10 char errmsg[512];
11 $char db_name[20];
12
13 $char description[16];
14 $long cat_num;
15 $short stock_num;
16 $char manu_code[4];
17 $loc_t cat_descr;
18 $loc_t cat_picture;
19 $varchar cat_advert[256];
20
21 char cpfl[18];
22

Continued on page 6-28

Lines 1 to 4

The #include <stdio.h> statement includes the stdio.h UNIX header file from
the /usr/include directory. The stdio.h file enables dispcat_pic to use the
standard C I/O library. The sqltypes.h file is an INFORMIX-ESQL/C header
file that defines names for integer values that identify SQL and C data types.
The locator.h file is an ESQL/C header file that contains the definition of the
locator structure. The locator structure is the host variable for a blob column
that is retrieved from or stored to the database. The locator structure has a
loc_t typedef. The program uses the locator structure to specify blob size and
location. (Lines 17 and 18 specify the locator structure as the data type for
host variables that receive data for the cat_descr and cat_picture blob
columns.)

Lines 5 to 11

Line 5 defines LCASE, a macro that converts an uppercase character to a low-
ercase character. Line 6 defines BUFFSIZ to be the number 256. The program
uses BUFFSIZ to specify the size of arrays that store input from the user. Line
8 defines errno, an external integer where system calls store an error number
to indicate the specific error that occurred. Line10 defines errmsg[], a charac-
ter array that receives the text of error messages from rgetmsg(). See the
6-26

The dispcat_pic Program
err_chk() function (lines 192-204) to see how errmsg[] is used. The
db_name[] character array is a host variable that stores the database name, if
the user names the database on the command line.

Lines 13 to 20

These lines define host variables for the description column of the stock table
and for all columns from the catalog table. A host variable receives data that
is fetched from a table and supplies data that is written to a table. Note that
lines 17 and 18 define locator structures for the two blob columns of the cat-
alog table, cat_descr and cat_picture.

Line 21

The cpfl character array stores the name of the temporary file where the ras-
ter image of cat_picture is written by the database server.
6-27

The dispcat_pic Program
23 main(argc, argv)
24 int argc;
25 char *argv[];
26 {
27 char ans[BUFFSZ], db_stmnt[50];
28
29 if (argc > 2)
30 {
31 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
32 argv[0]);
33 exit(1);
34 }
35 if(argc == 2)
36 {
37 strcpy(db_name, argv[1]);
38 $database $db_name;
39 sprintf(db_stmnt, "database %s", argv[1]);
40 err_chk(db_stmnt);
41 printf("\nOpening database: %s ...", db_stmnt);
42 }
43 else
44 {
45 $database stores5;
46 err_chk("database");
47 printf("\nOpening database: stores5");
48 }

Continued on page 6-30

Lines 23 to 25

The main() function is the point at which program execution begins. The first
argument, argc, is an integer that gives the number of arguments submitted
on the command line. The second argument, argv[], is a pointer to an array
of character strings that contain the command-line arguments. The
dispcat_pic program expects only the argv[1] argument, which is optional. It
is the name of the database to access. If argv[1] is not present, the program
opens the stores5 database.

Line 27

Line 27 defines variables that are local in scope to the main() function. The
ans[BUFFSZ] array is the buffer that receives input from the user, namely the
catalog number for the associated cat_picture column. The db_stmnt[50]
array is used to pass the DATABASE statement to the err_chk() function.

Lines 29 to 42

These lines handle the command-line arguments. Line 29 checks to see
whether more than two arguments are entered on the command line. If so,
dispcat_pic displays a message to show the arguments that it expects and
6-28

The dispcat_pic Program
then it terminates. Line 35 tests to see whether the number of command-line
arguments is equal to 2. If so, dispcat_pic assumes that the second argument,
argv[1], is the name of the database that the user wants to open. Line 37 cop-
ies the name of the database from the argv[1] command line, into the
db_name host variable. Then, on line 38, the program opens the specified
database with the DATABASE statement, using db_name. On line 39, the pro-
gram reproduces the DATABASE statement in the db_stmnt[] array. It does so
for the sake of the err_chk() call on line 40, which takes as its argument the
name of a statement. Line 41 displays the name of the database that is
opened.

Lines 43 to 48

The else on line 43 handles cases in which a database name is not entered on
the command line. If a database name is not given on the command line, line
45 executes the DATABASE statement for the default database, stores5. Line
46 calls the err_chk() function to check on the outcome and line 47 displays
the name of the database that is opened.
6-29

The dispcat_pic Program
49 while(1)
50 {
51 strcpy(cpfl, "./cpfl.XXXXXX");
52 if(!mktemp(cpfl))
53 {
54 printf("\n\tCan't create temp file for picture");
55 exit();
56 }
57 printf("\n\tEnter cat_num: ");
58 if(!getans(ans, 6))
59 continue;
60 if(rstol(ans, &cat_num))
61 {
62 printf("\n\tIllegal cat_num %s", ans);
63 exit();
64 }
65 cat_descr.loc_loctype = LOCMEMORY;
66 cat_descr.loc_bufsize = -1;
67 cat_descr.loc_oflags = 0;

Continued on page 6-32

Lines 49 to 56

The while(1) on line 49 begins the main processing loop within dispcat_pic.
The first operation that the loop performs is to create a uniquely named file
to receive cat_picture. Line 51 copies the name of the temporary file to the
cpfl[] array. Line 52 calls the UNIX mktemp() function to create a unique file-
name, passing cpfl[] as the argument. If mktemp() cannot create a unique
filename, it returns 0; lines 54 and 55 display a message to the user and exit.

Lines 57 to 59

Line 57 prompts the user to enter a catalog number for the corresponding
cat_picture column that the user wants to see. Line 58 calls getans() to receive
the catalog number that the user inputs. The arguments for getans() are the
address in which the input should be stored, ans[], and the maximum length
of the input that is expected, including the terminating null. If the input is
unacceptable, getans() returns0 and line 59 returns control to the while at the
top of the loop, causing the prompt for the catalog number to be redisplayed.

Lines 60 to 64

Line 60 calls the ESQL/C library function rstol() to convert the input string to
a long data type to match the data type of the catalog_num column. If rstol()
returns a nonzero value, the conversion failed and lines 62 and 63, respec-
tively, display a message to the user and exit.
6-30

The dispcat_pic Program
Lines 65 to 67

Line 65 sets loc_loctype in the cat_descr locator structure to LOCMEMORY to
tell the database server to load the data for cat_descr into memory. Line 66
sets loc_bufsize to -1 so that the database server allocates a memory buffer
to receive the data for cat_descr. If the select is successful, the database server
returns the address of the buffer in loc_buffer. Line 67 sets the loc_oflags file-
open-mode flags to 0 because the program retrieves the blob into memory
rather than a file.
6-31

The dispcat_pic Program
68 cat_picture.loc_loctype = LOCFNAME;
69 cat_picture.loc_fname = cpfl;
70 cat_picture.loc_oflags = LOC_WONLY;
71 cat_picture.loc_size = -1;
72 $select description, catalog_num, cat_descr, cat_picture
73 into $description, $cat_num, $cat_descr, $cat_picture
74 from stock, catalog
75 where catalog_num = $cat_num and
76 catalog.stock_num = stock.stock_num and
77 catalog.manu_code = stock.manu_code;
78 if(!err_chk("Select"))
79 {
80 printf("\n\t** Cat_num %ld not found in catalog table **", cat_num);
81 printf("\n\t** OR item not found in stock table **");
82 if(!more())
83 break;
84 continue;
85 }
86 if(cat_picture.loc_indicator == -1)
87 printf("\n\t\t\t** No cat_picture for this catalog_num **\n");

Continued on page 6-34

Lines 68 to 71

Lines 68 to 71 prepare the locator structure to retrieve the cat_picture column
into a named file. Line 68 moves LOCFNAME to loc_loctype to tell the data-
base server to load the data for cat_descr into a named file. Line 69 moves the
address of the cpfl filename into loc_fname. Line 70 moves the LOC_WONLY
value into the loc_oflags file-open-mode flags to tell the database server to
open the file for writing only.

Lines 72 to 77

Lines 72 to 77 perform the select to retrieve the catalog_num, cat_descr, and
cat_picture columns from the catalog table and the description column from
the stock table for the catalog number entered by the user. The select checks
to see whether the stock_num and manu_code for the selected row in the
catalog table also exist in the stock table. It does this because the catalog table
should not contain a row that does not have a corresponding row in the stock
table.

Lines 78 to 85

Lines 78 to 85 check the outcome of the select and handle a not-found condi-
tion. Line 78 calls the err_chk() function that checks the sqlca.sqlcode value
to determine whether INFORMIX-OnLine processed the SQL statement suc-
cessfully. If the err_chk() function returns 0 to indicate that the row was not
found, lines 80 and 81 display a message to that effect. Line 82 calls more() to
6-32

The dispcat_pic Program
ask whether the user wants to continue. If the user answers n for no, line 83
executes a break to terminate the main processing loop and transfer control
to line 96, which closes the database prior to program termination.

Lines 86 to 87

Line 86 checks cat_picture.loc_indicator for a value of -1 to determine
whether the cat_picture column contains a null. If so, line 87 informs the user
that the cat_picture column for the given catalog number does not contain a
picture. The program then continues to line 90 to display the other columns
that were returned.
6-33

The dispcat_pic Program
88 else
89 display_picture();
90 printf("Item %d: %s\n", cat_num, description);
91 prdesc();
92 unlink(cpfl);
93 if(!more())
94 break;
95 }
96 $close database;
97 }

Continued on page 6-36

Lines 88 and 89

Lines 88 and 89 handle cases in which cat_picture is not null. Line 89 calls the
display_picture() function to display the cat_picture data that the database
server wrote to a raster image file.

Lines 90 and 91

Lines 90 and 91 display the other columns returned by the select. Line 90 dis-
plays the catalog number that is being processed and the description column
from the stock table. Line 91 calls prdesc() to display the cat_descr column.
See “Lines 159 to 177” on page 6-40 for a detailed discussion of prdesc().

Lines 92 to 95

Line 92 deletes the file named in cpfl[], the temporary file that contains the
raster image for cat_descr. Line 93 calls more() to ask whether the user wants
to enter more catalog numbers. If not, more() returns 0 and the program per-
forms a break to terminate the main processing loop, close the database, and
terminate the program. The closing brace on line 95 terminates the main pro-
cessing loop, which began with the while(1) on line 49. If the user wants to
enter another catalog number, control returns to that point.

Line 96 and 97

When a break statement terminates the main processing loop begun by the
while(1) on line 49, control transfers to line 96, which closes the database. The
closing brace on line 97 terminates the main() function and the program.
6-34

The dispcat_pic Program
6-35

The dispcat_pic Program
98
99 /*
100 Display the sunview raster file. Note that this function works only
101 on SUN platforms.
102 */
103
104 display_picture()
105 {
106 #ifdef SUNVIEW
107 int child, childstat, w;
108 static char path[] = "/bin/screenload";
109 static char *slargs[] =
110 {
111 "-w",
112 "-x260",
113 "-y300",
114 "-X400",
115 "-Y350",
116 cpfl,
117 (char *) 0,
118 };
119
120 if((child = fork()) == 0)
121 {
122 execv(path, slargs);
123 fprintf(stderr, "Couldn't execute %s, errno %d", path, errno);
124 exit();
125 }
126 if((w = wait(&childstat)) != child && w != -1)
127 {
128 printf("Error or orphaned child %d", w);
129 exit(-1);
130 }
131 #endif /* SUNVIEW */
132 }

Continued on page 6-38

Lines 98 to 132

Line 104 begins the display_picture function to display cat_picture. It dis-
plays the cat_picture column only if the program is compiled with the
-DSUNVIEW option. (See “Before Using dispcat_pic” page 6-22.) Line 106
checks to see whether SUNVIEW is defined. Lines 107 to 130 execute only if
SUNVIEW is defined. If it is not defined, the function exits and returns to
main(). Lines 107 to 118 define variables that are involved in storing and dis-
playing cat_picture, as follows:

child receives the process id of the child process that
display_picture creates with fork().

childstat stores the status of the child process returned by wait().

w is the value returned by wait(), the process id of the termi-
nated child process.
6-36

The dispcat_pic Program
path stores the location and name of screenload, the program that
displays the cat_picture image from cpfl.

slargs stores the command-line arguments for screenload, the pro-
gram that displays the cat_picture image, as follows:

-w specifies the background color.

-x260, y300 specifies the location of the picture in pixels.

-X400, -Y350 specifies the size of the picture in pixels.

cpfl is the name of the file containing the picture.

(char *) 0 is null terminator for the slargs array

The database server writes the image from the cat_picture column to the file
named in cpfl. To display it, dispcat_pic calls the fork() system function to
create a second process. The dispcat_pic program distinguishes the parent
from the child process by checking the value that fork() returns. The fork()
returns 0 to the child process and the child process id to the parent, so that
only the child process executes lines 122 to 124. In the child process, line 122
executes the program named in path, the Sun screenload utility program.
The screenload utility program overlays dispcat_pic in the child process and
executes with the command-line arguments that are passed in slargs[]. Lines
123 and 124, which display an error message and exit, only execute if the sys-
tem is unable to launch screenload.

On line 126, the parent process calls the wait() system function and waits for
the child process to terminate. The wait() system function returns the process
id of the process that terminates. Line 126 checks to see that this value, w, is
the same as child, the value returned by fork(). It also checks to see that the
value is not -1, which indicates an error or an interrupt occurred in the child
process. If this occurs, line 128 displays a message to the user and line 129
exits the program.
6-37

The dispcat_pic Program
133 getans(ans, len)
134 char *ans;
135 int len;
136 {
137 char buf[BUFFSZ];
138 int c, n = 0;
139
140 if(len >= BUFFSZ)
141 {
142 printf("\ngetans(): len > buffer");
143 return 0;
144 }
145 while(((c = getchar()) != '\n') && n < BUFFSZ)
146 buf[n++] = c;
147 buf[n] = '\0';
148 if(n > 1 && n >= len)
149 {
150 printf("Input exceeds maximum length");
151 return 0;
152 }
153 if(len <= 1)
154 *ans = buf[0];
155 else
156 strncpy(ans, buf, len);
157 return 1;
158 }

Continued on page 6-40

Lines 133 to 158

Lines 133 to 158 constitute the getans() function. The getans() function uses
the getchar() standard library function to accept input from the user. Lines
134 and 135 define the incoming arguments for getans(), the address of the
buffer where it copies the ans input, and the maximum number of characters
that the len calling function expects. Line 137 defines a buf[] array that is the
input buffer. The int on line 138, c, receives the character returned by
getchar(). The second integer defined on line 138, n, is used to subscript the
buf[] input buffer. Lines 140 to 144 check to see that the maximum length of
the expected input, len, is less than or equal to the size of the BUFFSZ input
buffer. If it is not, line 142 displays an error message and line 143 returns 0 to
the calling function.

Line 145 calls getchar() to receive input from the user until a \n NEWLINE
character is encountered or until the maximum input is received; that is, n is
not less than BUFFSZ. Line 146 moves the c input character into the current
position in buf. Line 147 places a terminating null at the end of the buf[n]
input.

Lines 148 checks to see whether the number of characters received, n, is less
than the number of characters expected, len. If not, line 150 displays a mes-
sage to the user and line 151 returns 0 to the calling function to indicate that
6-38

The dispcat_pic Program
an error occurred. Line 153 checks to see whether one or more characters
were entered. If the expected number of characters, len, is less than or equal
to 1, line 154 moves only a single character to the address given by the ans
calling function. If only one character is expected, getans() does not append
a terminating null to the input. If the expected input, len, is greater than 1,
line 156 copies the user’s input, buf, to the address supplied by the ans call-
ing function. Line 157 returns 1 to the calling function to indicate successful
completion.
6-39

The dispcat_pic Program
159 prdesc()
160 {
161 long size;
162 char shdesc[81], *p;
163
164 size = cat_descr.loc_size;
165 printf("\nDescription for %ld:\n", cat_num);
166 p = cat_descr.loc_buffer;
167 while(size >= 80)
168 {
169 ldchar(p, 80, shdesc);
170 printf("\n%80s", shdesc);
171 size -= 80;
172 p += 80;
173 }
174 strncpy(shdesc, p, size);
175 shdesc[size] = '\0';
176 printf("%-s\n", shdesc);
177 }
178
179 more()
180 {
181 char ans;
182
183 while((ans = LCASE(ans)) != 'y' && ans != 'n')
184 {
185 printf("\nMore? (y/n) . . .");
186 if(!getans(&ans, 1))
187 continue;
188 }
189 return (ans == 'n') ? 0 : 1;
190 }
191

Continued on page 6-42

Lines 159 to 177

Lines 159 to 177 make up the prdesc() function that displays the cat_descr
column of the catalog table. Line 161 defines size, a long integer that prdesc()
initializes with the value in cat_descr.loc_size. Line 162 defines shdesc[81],
an array in which prdesc() temporarily moves 80 byte chunks of the
cat_descr text for output. Line 162 also defines *p, a pointer that marks the
current position in the buffer as it is being displayed.

INFORMIX-OnLine returns the size of the buffer that it allocates for a blob in
loc_size. Line 164 moves cat_descr.loc_size to size. Line 165 displays the
string "Description:" as a header for the cat_descr text. Line 166 sets the
p pointer to the buffer address that OnLine returned in cat_descr.loc_size.
Line 167 begins the loop that displays the cat_descr text to the user. The
while() repeats the loop until size is less than 80. Line 169 begins the body of
the loop. The ldchar() function copies 80 bytes from the current position in
the buffer, addressed by p, to shdesc[], removing any trailing blanks. Line 170
prints the content of shdesc[]. Line 171 subtracts 80 from size to account for
6-40

The dispcat_pic Program
the portion of the buffer that was just printed. Line 172, the last in the loop,
adds 80 to p to move it past the portion of the buffer that was just displayed.
The process of displaying cat_descr.loc_size 80 bytes at a time continues until
there are fewer than 80 characters left to be displayed (size < 80). Line 174
copies the remainder of the buffer into shdesc[] for the length of size. Line
175 appends a null to shdesc[size] to mark the end of the array and line 176
displays shdesc[].

Lines 179 to 190

The more() function displays "More? (y/n)..." to ask whether the user
wants to enter another catalog number. The more() function does not have
any input arguments. Line 181 defines a one character field, ans, to receive
the user’s response. The condition expressed on line 183 causes the question
to be redisplayed until the user answers y(es) or n(o). The LCASE macro con-
verts the user’s answer to lowercase letters for the comparison. Line 185 dis-
plays the question and line 186 calls getans() to accept the user’s input. Once
the user answers y(es) or n(o), control passes to line 189, which returns 1 for
y(es) and 0 for n(o) to the calling function.
6-41

The dispcat_pic Program
192 err_chk(name)
193 char *name;
194 {
195 if(sqlca.sqlcode < 0)
196 {
197 if((rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg))) < 0)
198 printf("\n\tError %d during %s:\n", sqlca.sqlcode, name);
199 else
200 printf("\n\tError %d during %s: %s\n", sqlca.sqlcode, name, errmsg);
201 exit(1);
202 }
203 return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
204 }

Lines 192 to 204

The err_chk() function examines the sqlcode field in the sqlca structure to
determine the outcome of an SQL statement. The function takes the name
input argument defined on line 193, which is a character pointer that gives
the name of the executed SQL statement. If an error occurred, name is dis-
played to the user to identify the statement that was in error. Line 195 tests
the value of sqlca.sqlcode to see whether it is less than 0. If so, err_chk() calls
rgetmsg() to retrieve the message text for the error and store it in errmsg[]. If
rgetmsg() is not successful, line 198 displays an error message that gives the
values of sqlca.sqlcode and name. If rgetmsg() is successful, line 200 displays
an error message that includes sqlca.sqlcode, name and the text in errmsg[].
In either case, if sqlca.sqlcode is less than 0, err_chk() exits the program
rather than return to the calling function. If sqlca.sqlcode is greater than 0,
line 203 checks to see whether its value is equal to SQLNOTFOUND. If so, it
returns0 to the calling function. Otherwise, it returns1 to the calling function
to indicate that the SQL statement was successful.
6-42

Chapter
7

Error Handling
Chapter Overview 3

The Role of the sqlca Structure 3

General Error Handling 5
Error Status < 0 5
Error Status = 0 5
Error Status > 0 and < 100 5
Error Status = SQLNOTFOUND or 100 6

Error Status = 100 After a FETCH Statement 6
Error Status = 100 After Other Statements 6

Using the SQLCODE Variable 7
Checking for an Error Using In-Line Code 8
Automatically Checking for Errors with the

WHENEVER Statement 9
Checking for Warnings 10
Errors After a PREPARE Statement 12
Errors After an EXECUTE Statement 12
RGETMSG 13

A Program That Uses Full Error Checking 15

7-2

Chapter Overview
Proper database management requires that all logical sequences of state-
ments that modify the database continue successfully to completion. If, for
example, you update a customer account to show a reduction of $100 in the
payable balance and the next step of updating the cash balance fails, your
books become out of balance. It is important to check that every SQL state-
ment executes as you anticipate.

This chapter describes how to use the sqlca structure to check for run-time
errors in your INFORMIX-ESQL/C program. The sqlca structure is defined in
sqlca.h and is shown in Figure 7-1. The sqlca structure is explained fully in
Chapter 5 of The Informix Guide to SQL: Reference.

Also included in this chapter are the syntax and description of the rgetmsg
routine, which you can use to find the error text of a given error number.

The Role of the sqlca Structure
After each SQL statement is executed, the database server returns informa-
tion to the sqlca structure. The error status is one of the returned pieces of
information. Information relevant to performance or the nature of the data
handled also is returned. For some statements, warnings are returned instead
of error information. You can take advantage of any of this information in
your ESQL/C program.
7-3

The Role of the sqlca Structure
Figure 7-1 contains the contents of the sqlca.h header file. The sqlca.h header
file is automatically included in an ESQL/C program.

#ifndef SQLCA_INCL

#define SQLCA_INCL

struct sqlca_s
{
long sqlcode;
char sqlerrm[72]; /* error message parameters */
char sqlerrp[8];
long sqlerrd[6];

/* 0 - estimated number of rows returned */
/* 1 - serial value after insert or ISAM error code */
/* 2 - number of rows processed */
/* 3 - estimated cost */
/* 4 - offset of the error into the SQL statement */
/* 5 - rowid after insert */

struct sqlcaw_s
{
char sqlwarn0; /* = W if any of sqlwarn[1-7] = W */
char sqlwarn1; /* = W if any truncation occurred or

database has transactions */
char sqlwarn2; /* = W if a null value returned or

ANSI database */
char sqlwarn3; /* = W if no. in select list != no. in into

list or OnLine backend */
char sqlwarn4; /* = W if no where clause on prepared update,

delete or incompatible float format */
char sqlwarn5; /* = W if non-ANSI statement */
char sqlwarn6; /* reserved */
char sqlwarn7; /* reserved */
} sqlwarn;

};

extern struct sqlca_s sqlca;

extern long SQLCODE;

#define SQLNOTFOUND 100

#endif /* SQLCA_INCL */

Figure 7-1 The sqlca record structure
7-4

General Error Handling
General Error Handling
INFORMIX-ESQL/C returns a result code into the sqlca structure after execut-
ing every SQL statement except DESCRIBE. The returned code is put into the
sqlcode field of the sqlca structure. You can test the contents of this field after
each statement executes to verify that the statement executed correctly. There
are four possible states:

Value Definition
sqlca.sqlcode < 0 Failure
sqlca.sqlcode = 0 Success
sqlca.sqlcode >0 and <100 Depends on statement; see following discussion
sqlca.sqlcode = SQLNOTFOUND No rows found; SQLNOTFOUND is equal to 100

Error Status < 0
If the statement failed to execute correctly, the database server sets the
sqlca.sqlcode and SQLCODE to a negative value. It also can set other fields in
the sqlca structure, as well as an ISAM return code. Checking and dealing
with errors is explained in detail later in this chapter.

Error Status = 0
If execution succeeded, the database server sets sqlca.sqlcode to 0. Other
information can be returned to the sqlca structure by the database server, if
the statement succeeded. For information about the other fields in the sqlca
structure, see the section “Checking for Warnings” on page 7-10 and the
description of the sqlca structure in Chapter 5 of The Informix Guide to SQL:
Reference.

Error Status > 0 and < 100
After a DESCRIBE statement, the database server sets SQLCODE to an integer
value that represents the type of SQL statement that is described. The
DESCRIBE statement operates on a statement id that is previously assigned by
a PREPARE statement to a dynamic SQL statement. See “Constants and sql-
stype.h” on page 9-9 for a list of possible SQLCODE values after a DESCRIBE
statement.
7-5

Error Status = SQLNOTFOUND or 100
Error Status = SQLNOTFOUND or 100
Five statements can cause the SQLCODE field to be set to the value 100. The
five statements are shown in the following list. The last four statements cause
positive values only if the database is ANSI-compliant.

• FETCH

• DELETE...WHERE...

• INSERT...WHERE...

• SELECT INTO TEMP...WHERE...

• UPDATE...WHERE...

Error Status = 100 After a FETCH Statement

The FETCH statement is a special case with respect to error handling. After a
fetch, sqlca.sqlcode can contain the values 0, 100, or a negative value. The 0
and negative values indicate success and failure, as they do after the execu-
tion of other statements. The 100 value indicates that no additional rows are
retrieved. For readability, the 100 value is defined as SQLNOTFOUND in
sqlca.h. By checking for sqlca.sqlcode = SQLNOTFOUND, you can write code
to process the results of queries only when rows are returned.

Error Status = 100 After Other Statements

In an ANSI-compliant database, if any of the following statements fail to
access any rows, the database server sets sqlca.sqlcode equal to 100.

• INSERT INTO tablename SELECT...WHERE

• SELECT INTO TEMP...WHERE...

• DELETE...WHERE

• UPDATE...WHERE
7-6

Using the SQLCODE Variable
In the following example, the INSERT statement inserts into the hot_items
table any stock item that is ordered in a quantity greater than 10,000. If no
items are ordered in that great a quantity, the SELECT part of the statement
fails to insert any rows. The database server returns SQLNOTFOUND (100) in
an ANSI-compliant database and 0 in a database that is not ANSI-compliant.

$insert into hot_items
select distinct stock.stock_num,

stock.manu_code,description
from items, stock
where stock.stock_num = items.stock_num

and stock.manu_code = items.manu_code
and quantity > 10000;

The following example of an UPDATE statement fails to update any rows if
there is no manufacturer with the manu_code SWK. The database server
returns SQLNOTFOUND (100) in an ANSI-compliant database and 0 in a data-
base that is not ANSI-compliant.

$update stock
set unit_price = unit_price * 1.05
where manu_code = "SWK";

Using the SQLCODE Variable
In the sqlca.h header file, the SQLCODE global variable is defined as a long
integer. Whenever the database server returns a value to sqlca.sqlcode, the
value is copied into SQLCODE. For readability and brevity, you can use
SQLCODE in your ESQL/C program in place of sqlca.sqlcode.

You can use the SQLCODE error-checking variable in pure C modules linked
to an ESQL/C program to return the same values returned in sqlca.sqlcode in
ESQL/C modules. To use SQLCODE in a pure C module, declare SQLCODE as
an external variable, as follows:

extern long SQLCODE;

The SQLCODE variable is allocated in the libsql.a library.
7-7

Checking for an Error Using In-Line Code
Checking for an Error Using In-Line Code
To check for an error, test the value of sqlca.sqlcode (or SQLCODE) after an
SQL statement executes. For example, if you want to check that a CREATE
DATABASE statement executed as expected, you can use the code shown in
Figure 7-2.

$create database personnel with log;
if (SQLCODE < 0)

{
printf(“Error %d in creating database\n”, sqlca.sqlcode);
exit(1);
}

Figure 7-2 Condition to test for an error during an SQL statement

Alternatively, you can write a function that processes any error. Your pro-
gram can call the error function each time that SQLCODE is returned as a neg-
ative value. The do_error function shown in Figure 7-3 retrieves the message
associated with an error. It also checks for more information, if it is available,
by checking whether an ISAM error also is returned. It prints any messages
and then exits the program.

void do_error(st_name, errnum)
char *st_name;
int errnum;
{

char errmsg[400];

printf("Error %d occurred on %s.\n", errnum, st_name);
rgetmsg(errnum, errmsg, sizeof(errmsg));
printf("%s\n”, errmsg);
if (sqlerrd[1] != 0)

{
printf("The ISAM code is %d\n", sqlerrd[1]);
rgetmsg(sqlerrd[1], errmsg, sizeof(errmsg));
printf("ISAM message: %s\n", errmsg);
}

exit(1);
}

$ create database personnel with log;
if (SQLCODE < 0)

 do_error("Create database" ,SQLCODE);

Figure 7-3 Example of an error-handling function
7-8

Automatically Checking for Errors with the WHENEVER Statement
Check the status of sqlca.sqlcode after each SQL statement. Use the
WHENEVER statement to reduce the amount of code that you must write to
check for errors. Using the WHENEVER statement is explored in the following
section.

Automatically Checking for Errors with the WHENEVER
Statement

You can use the WHENEVER statement to trap for all errors and warnings that
occur during the execution of SQL statements. Using the WHENEVER state-
ment to check for errors replaces the conditional test of the SQLCODE value
after each SQL statement.

Use the WHENEVER statement to check for errors, SQLNOTFOUND, or warn-
ings. You can direct the program to take any of the following actions:

• Continue execution

• Stop execution

• Call a function

• Go to a labeled section of code

For details of the syntax and use of the WHENEVER statement, see Chapter 7
of The Informix Guide to SQL: Reference.

If you want to call the do_error function (shown in Figure 7-3) every time an
error occurs in a program block, you can put the following statement in the
early part of the program block, before any SQL statements:

$WHENEVER SQLERROR GOTO error_start;

As a result, your program contains SQL statements and the following code
exists in the block of code that uses SQL statements. In this code example, msg
is a global character variable that contains the type of statement executed.
The program assigns the contents of msg before executing an SQL statement.

error_label:
do_err (msg, SQLCODE);

If you use the WHENEVER statement with the GOTO keyword and a label, you
must provide that label and appropriate code in each function that contains
SQL statements. Using the GOTO keyword in the WHENEVER statement is
consistent with the ANSI standard.
7-9

Checking for Warnings
If you do not want to use a GOTO construct, you can use the CALL keyword
in the WHENEVER statement to call a function. (The CALL option is an Infor-
mix extension to the ANSI standard.) If you want to call the do_error function
(shown in Figure 7-3) every time an error occurs in a program, you take the
following two steps:

• Modify the do_error function so that it does not need any arguments. In
this case, make the st_name a global variable.

• Put the following WHENEVER statement in the early part of your pro-
gram, before any SQL statements

$WHENEVER SQLERROR CALL do_error;

Checking for Warnings
In addition to checking for errors after executing each SQL statement, you can
check for warnings. Warnings that are issued by the database server when a
statement is executed are stored in the sqlcaw_s structure within the sqlca
structure. The form and possible contents of the warning structure are dis-
cussed in detail in Chapter 5 of The Informix Guide to SQL: Reference.

The database server generates the following warnings, grouped by the caus-
ing statement. The flag that is set for each situation is listed after the descrip-
tion of the warning.

DATABASE Whether it uses transactions (sqlwarn1).
Whether it operates as ANSI-compliant (sqlwarn2).
Whether the database server is INFORMIX-OnLine
(sqlwarn3).

START DATABASE Whether it uses transactions (sqlwarn1).
Whether the database is ANSI-compliant
(sqlwarn2).

SELECT Whenever a value from a database column is trun-
cated to fit into a character host variable (sqlwarn1).
Whenever an aggregate function encounters a null
value (sqlwarn2).
If the number of items in the select list of a SELECT
clause is not the same as the number of host vari-
ables in the INTO clause (sqlwarn3).
Whenever a float-to-decimal conversion is used
(sqlwarn4).
7-10

Checking for Warnings
INSERT Whenever a float-to-decimal conversion is used
(sqlwarn4).

UPDATE Whenever a float-to-decimal conversion is used
(sqlwarn4).

DELETE Whenever a float-to-decimal conversion is used
(sqlwarn4).

EXECUTE Whenever a float-to-decimal conversion is used
(sqlwarn4).

OPEN Whenever a float-to-decimal conversion is used
(sqlwarn4).

PREPARE Whenever the UPDATE or DELETE statement is pre-
pared without a WHERE clause (sqlwarn4).

All statements Whenever an Informix extension to SQL is executed
and the DBANSIWARN environment variable is set
(sqlwarn5).

Subqueries Whenever an aggregate function encounters a null
value (sqlwarn2).

You can test for warnings using in-line code by checking whether the first
warning field (sqlwarn0) is set to "W". You also use the WHENEVER state-
ment with the SQLWARNING keyword to test whether any warnings are
issued by the database server. Once you know a warning is issued by the
database server, you can determine the exact nature of the warning by check-
ing the values of the six used fields in sqlcaw_s.

For example, if you want to find out what kind of database was opened with
a DATABASE statement, you can use the block of code shown in Figure 7-4.

msg = "DATABASE stmt"
$DATABASE stores5;
if (SQLCODE < 0) do_error(msg, SQLCODE);
else if (sqlca.sqlwarn0 == "W")

{
if (sqlca.sqlwarn1 == "W") trans_db = 1;
if (sqlca.sqlwarn2 == "W") ansi_db = 1;
if (sqlca.sqlwarn3 == "W") online_db = 1;
}

Figure 7-4 In-line code to check if and what warnings are returned after a DATABASE statement
7-11

Errors After a PREPARE Statement
Note: After a DATABASE statement, sqlwarn2 indicates that the database is ANSI-
compliant. After a SELECT statement, sqlwarn2 indicates that an aggregate func-
tion encounters a null value. The same warning flags are used differently for each
SQL statement.

Errors After a PREPARE Statement
If a PREPARE statement fails with SQLCODE < 0, it is usually because of a syn-
tax error in the prepared text. When a PREPARE statement fails, the offset into
the text at which the error occurs is returned in the sqlca.sqlerrd[4] variable.
Your program can use the value in sqlca.sqlerrd[4] to indicate where the syn-
tax of the dynamically prepared text is incorrect. If you are using PREPARE
with several statements, error status is returned on the first error in the text,
even if there are several errors.

Errors After an EXECUTE Statement
If a prepared statement cannot be executed successfully, the database server
returns SQLCODE < 0 after the EXECUTE statement. The SQLCODE variable
holds the error that the database server returns from the failed statement. If
the SQLCODE is equal to 0 after the completion of an EXECUTE statement, the
prepared statement in the block succeeded; if the prepared block includes
multiple statements, all of the statements succeeded.
7-12

RGETMSG
RGETMSG

Purpose
The rgetmsg function converts an Informix error message number into the
corresponding message text string. The error must be between -32766 and
+32767.

Syntax

int rgetmsg(msgnum,msgstr,lenmsgstr)
short msgnum;
char *msgstr;
short lenmsgstr;

lenmsgstr is the size of the message string.

msgnum is the error message number.

msgstr is the message string (output buffer).

Usage
The message number is typically one returned in sqlca.sqlcode. The rgetmsg
function uses the system file for error message text (/usr/informix/msg).

Unlike rgetmsg, you can use rgetlmsg for any error message, both those
within and outside the range handled by rgetmsg.

Return Codes
0 The conversion was successful.

-1232 Unknown message number.
7-13

Example
Example

/*
 * rgetmsg.ec *

 The following program demonstrates the usage of rgetmsg() function.
 It displays an error message for accessing a non existent database.
*/

$include sqlca;

char errmsg[400];

main()
{
 $database stories;/* Access a non-existent database */
 if(sqlca.sqlcode != 0)

{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\nError %d (in database stories): %s\n",sqlca.sqlcode,errmsg);
}

}

Example Output

Error -329 (in database stories): Database not found or no system permission.
7-14

A Program That Uses Full Error Checking
A Program That Uses Full Error Checking
The program that follows is a modified version of demo1.ec, which was fully
explained in Chapter 1 of this manual. The version listed and described here
contains error checking on each of the SQL statements contained in the pro-
gram; only the error-handling statements are described.

Error handling in this modified demo1.ec program uses the WHENEVER
statement to call the sql_error C function. The sql_error function is defined
in the program. If an error occurs in an SQL statement, the sql_error function
is called. It displays the error number and the accompanying ISAM error, if
there is one.
7-15

A Program That Uses Full Error Checking
1 #include <stdio.h>
2 $include sqlca;
3
4 /* Uncomment the following line if the database has
5 transactions: */
6
7 /* $define TRANS; */
8
9 $define FNAME_LEN 15;
10 $define LNAME_LEN 15;
11
12 char state_name[20];
13
14 main()
15
16 {
17 $char fname[FNAME_LEN + 1];
18 $char lname[LNAME_LEN + 1];
19
20
21 printf("DEMO1 Sample ESQL program running.\n\n");
22
23
24 $WHENEVER SQLERROR CALL sql_error;
25
26 strcpy (state_name, "DATABASE stmt");
27 $database stores;
28
29 strcpy (state_name, "DECLARE stmt");
30 $declare democursor cursor for
31 select fname, lname
32 into $fname, $lname
33 from customer
34 where lname > "C";
35
36 $ifdef TRANS;
37 strcpy (state_name, "BEGIN WORK stmt");
38 $begin work;
39 $endif;
40
41 strcpy (state_name, "OPEN stmt");
42 $open democursor;
43
44 strcpy (state_name, "FETCH stmt");
45 for (;;)
46 {
47 $fetch democursor;
48 if (sqlca.sqlcode != 0) break;
49 printf("%s %s\n",fname, lname);
50 }
51
52 strcpy (state_name, "CLOSE stmt");
53 $close democursor;
54
55 $ifdef TRANS;
56 strcpy (state_name, "COMMIT WORK stmt");
57 $commit work;
58 $endif;
59
60 printf("\nProgram Over.\n");
61 exit(1);
62 } /*End of main routine */

Continued on page 7-18
7-16

A Program That Uses Full Error Checking
Line 12

The char state_name[20] statement declares a global variable that holds the
name of the statement.

Line 24

The WHENEVER statement with the SQLERROR keyword indicates that after
each SQL statement, the contents of sqlca.sqlcode are checked to determine
whether an error occurred. If an error occurred, the CALL keyword indicates
that the function sql_error is called.

Line 26

This line puts the string "DATABASE stmt" into the state_name variable so
that the sql_error function can print out the type of statement that caused the
error.

Lines 29, 37, 41, 44, 52, 56

These lines put a descriptive string into the state_name variable before each
SQL statement, in case the SQL statement fails.

Line 61

The program exits with a return code of 1 to indicate that no errors occurred.
7-17

A Program That Uses Full Error Checking
63
64 /* Function to handle errors */
65 sql_error ()
66 {
67 char errmsg[400];
68
69 printf("Error %d occurred on %s.\n", SQLCODE, state_name);
70 rgetmsg(SQLCODE, errmsg, sizeof(errmsg));
71 printf("%s\n", errmsg);
72 if (sqlca.sqlerrd[1] != 0)
73 {
74 printf("The ISAM code is %d\n", sqlca.sqlerrd[1]);
75 rgetmsg(sqlca.sqlerrd[1], errmsg, sizeof(errmsg));
76 printf("ISAM message: %s\n", errmsg);
77 }
78
79 exit(0);
80 }

Line 65
Line 65 is the first line of the sql_error function. The sql_error function does
not take any arguments. (Any function called from a WHENEVER statement
cannot use arguments.) The sql_error function expects two global variables
to contain information: SQLCODE and state_name. SQLCODE is declared in
the sqlca.h file; state_name is declared above main(); the value of state_name
is assigned before each SQL statement in the program.

Line 67
Line 67 declares a local character buffer to hold the error text associated with
an SQL error or an ISAM error.

Lines 69 to 71
Lines 69 to 71 print the error number and error text. The error number is
obtained from the SQLCODE global variable. The error text is obtained by
calling the INFORMIX-ESQL/C routine rgetmsg.

Lines 72 to 77
After the error number and text is printed, the second element of the sqlerrd
record is evaluated to determine whether it contains a nonzero number. If it
contains a nonzero value, the value is the ISAM error number. In that case, the
ISAM error number and the ISAM error text are printed. The rgetmsg routine
is used to obtain the text of the ISAM error message.

Lines 79
The program exits with a return code of 0 to indicate that an error of some
kind occurred.
7-18

Chapter
8

Working with the
Database Server
Chapter Overview 3

Database Server Control Functions 3
SQLBREAK 4
SQLDETACH 5
SQLEXIT 6
SQLSTART 7

8-2

Chapter Overview
This chapter contains information on the following functions that you can
use to control the database server processes:

• sqlbreak

• sqldetach

• sqlexit

• sqlstart

Database Server Control Functions
The functions that you can use to control the database server processes are
listed and fully described in the following sections.

Function Name Description
sqlbreak Sends the database server a request to stop processing.
sqldetach Detaches a child process from a parent process.
sqlexit Terminates a database server process.
sqlstart Starts a database server process.
8-3

SQLBREAK
SQLBREAK

Purpose
The sqlbreak function is a run-time SQL function that sends the database
server a request to interrupt processing.

Syntax

int sqlbreak()

Usage
When the database server receives the interrupt signal, it returns status and
control to the application process, as if the SQL statement terminated with an
error condition.

Return Codes
0 The call to sqlbreak was successful.

!=0 There is no database server process running when sqlbreak
is called.
8-4

SQLDETACH
SQLDETACH

Overview
The sqldetach function is a run-time SQL database server control function
that detaches a child process from a parent process so that the child process
has its own database connection.

Syntax

void sqldetach()

Usage
The sqldetach function should be used when the child process shares the
same code space as the parent process; that is, when there is no exec() after a
fork() call.

This function does not work with the vfork() call.
8-5

SQLEXIT
SQLEXIT

Purpose
The sqlexit function is a run-time SQL function that terminates a database
server process, thereby freeing resources. It can be used to reduce database
overhead in programs that refer to a database only briefly and at long inter-
vals or that access a database only during initialization.

Syntax

void sqlexit()

Usage
The sqlexit function should be called only when no databases are open. For
example, before calling sqlexit, issue a CLOSE DATABASE statement. If
sqlexit is called when a database that uses transactions is open, it rolls back
any current transactions and closes the database.
8-6

SQLSTART
SQLSTART

Purpose
The sqlstart function is a run-time SQL function that starts a database server
process.

Syntax

int sqlstart()

Usage
The sqlstart function should be called only when no databases are open. If it
is called when a database is open, sqlstart does nothing.

Executing the $database statement has the same effect as calling sqlstart,
but also opens a database.

Return Codes
0 The call to sqlstart was successful.

<0 The call to sqlstart failed.
8-7

Return Codes
Example

/*
 * sqls.ec *

The following program reads the systables table for the selected database
and displays the name of each table found, followed by a list of the table
columns and their lengths. If the program is interrupted with CTRL-C, onintr()
intercepts the signal, interrupts the database server with sqlbreak(), and allows
the user to select another database.

*/

#include <stdio.h>
#include <ctype.h>
#include <decimal.h>
#include <setjmp.h>
#include <signal.h>
#include <errno.h>
$include sqltypes.h;

#define LCASE(c) (isalpha(c) ? (isupper(c) ? tolower(c) : c) : c)

jmp_buf sjbuf;

$char dbname[19];
char msgbuf[80];

main()
{
 int onintr();

 signal(SIGINT, onintr);
 setjmp(sjbuf);
 sqlstart();
 while(1)
 {

printf("\n\n\tEnter the database name: ");
if(getans(dbname, sizeof(dbname)) < 0)
 {
 printf("\n\tIllegal name\t");
 continue;
 }
$database $dbname;
if(err_chk("OPEN", dbname) < 0)
 {
 rgetmsg(sqlca.sqlcode, msgbuf, (short)sizeof(msgbuf));
 printf("\n\tstat: %d, %s\n",sqlca.sqlcode, msgbuf);
 continue;
 }
break;
}

 dsptbls();
 $close database;
 exit(1);
}

/*
 The onintr() function catches SIGINT and terminates the database server.
 It then allows the user to select another database.
*/
8-8

Return Codes
onintr()
{
 char ans;

 ans = ’ ’;
 printf("\n ***INTERRUPT *** \n");
 signal(SIGINT, onintr);
 sqlbreak();
 $close database;
 while(ans != ’y’ && ans != ’n’)
 {

printf("\n\n\t*** Select another database? (y/n)");
getans(&ans,1);

 }
 if(ans == ’y’)
 longjmp(sjbuf,0);
 exit(1);
}

/*
 The dsptbls() function selects the tabname and tabid columns from the
 systables table and displays them. It then calls dspcols() to display
 the columns.
*/

dsptbls()
{
 $char tabnm[19];
 $long tabid;

 $declare systabs cursor for select tabname, tabid from systables;
 $open systabs;
 if(err_chk("OPEN", "systabs") < 0)

exit(1);
 while(1)
 {

$fetch systabs into $tabnm, $tabid;
if(!err_chk("fetch", "systabs"))
 break;
printf("\n\n\nTable Name: %s", tabnm, tabid);
dspcols(tabid);
}

}

/*
 The dspcols() function accesses the syscolumns table to display the name,
 data type and length of each column in the table specified by tabid.
*/

dspcols(tabid)
$int tabid;
{
 $char colname[18];
 $short coltype, collength;
 char *rtypname();

 $declare syscols cursor for select colname, coltype, collength
 from syscolumns where tabid = $tabid;
 $open syscols;
 if(err_chk("OPEN", "syscols") < 0)
 exit(1);
 printf("\n\n\tColumn Type \t\tLength\n");
 while(1)
 {
8-9

Return Codes
$fetch syscols into $colname, $coltype, $collength;
if(!err_chk("fetch", "syscols"))
 return;
printf("\n\t%s %-10s\t\t%d", colname, rtypname(coltype), collength);

 }
}

getans(ans, len)
char *ans;
int len;
{
 char buf[512], c;
 int n = 0;

 while((c = getchar()) != ’\n’)
 buf[n++] = LCASE(c);
 buf[n] = ’\0’;
 if(n > 1 && n >= len)
 return(-1);
 if(len <= 1)
 *ans = buf[0];
 else

strncpy(ans, buf, len);
 return 1;
}

err_chk(str, ptr)
char *str, *ptr;
{
 if(sqlca.sqlcode < 0)
 {

printf("\n\tError on %s: %s, %d", str, ptr, sqlca.sqlcode);
return sqlca.sqlcode;

 }
 return (sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1;
}

8-10

Return Codes
Example Output

.

.

.

 dtype char 1

Table Name: syssynonyms

 Column Type Length

 owner char 8
 synname char 18
 created date 4
 tabid integer 4

Table Name: syssyntable

 Column Type Length

 tabid integer 4
 servername char 18
 dbname char 18
 owner char 8
 tabname char 18
 btabid integer 4

Table Name: sysconstraints

 Column Type Length
^C
 customer_num integer 4
 ***INTERRUPT ***

 *** Select another database? (y/n)
8-11

Return Codes
8-12

Chapter
9

Dynamic
Management in
INFORMIX-
ESQL/C
Chapter Overview 3

Dynamic SQL Statements and Management Techniques 3
Types of Dynamic Management Situations 4
The System Descriptor Area 5
The sqlda Structure 6
Constants in sqltypes.h 7

Defined Constants for Use with Dynamic
Statements 7

Constants and sqlstype.h 9

Non-SELECT Statements That Do Not Receive Values at
Run Time 12

Using EXECUTE IMMEDIATE 12

SELECT Statements in Which Select-List Values Are
Determined at Run Time 13

Using Descriptors 13
Example of a SELECT Statement Using

Descriptors 15
Using an sqlda Structure 17

Example of a SELECT Statement Using the sqlda
Structure 18

SELECT Statements That Receive WHERE-Clause Values at Run Time 21
Using Host Variables 21

Example of Using Host Variables in a Program 23
Using a System Descriptor Area 24

Example of Using a System Descriptor Area 26
Using an sqlda Structure 28

Non-SELECT Statements That Receive Values at Run Time 29
Using Host Variables 30
Using a System Descriptor Area 30

Example of Using SET DESCRIPTOR with a Locator Structure 31
Using an sqlda Structure 32
9-2

Chapter Overview
Dynamic management in INFORMIX-ESQL/C involves using SQL statements
in which the contents are not known at the time the program is compiled. All
or part of these dynamic SQL statements can be generated at the time the pro-
gram is executed.

The SQL statements used for dynamic management are illustrated and
described in Chapter 7 of The Informix Guide to SQL: Reference. The names of
the statements that are used in dynamic management are as follows:

ALLOCATE DESCRIPTOR FREE

DEALLOCATE DESCRIPTOR GET DESCRIPTOR

DECLARE OPEN

DESCRIBE PREPARE

EXECUTE PUT

EXECUTE IMMEDIATE SET DESCRIPTOR

FETCH

Dynamic SQL is also discussed in Chapter 6 of The Informix Guide to SQL:
Tutorial.

This chapter discusses the general concepts of dynamic management and
how to use it. It also includes two annotated example programs that use
dynamic SQL.
9-3

Dynamic SQL Statements and Management Techniques
Dynamic SQL Statements and Management Techniques
The basic process of using dynamic SQL statements is handled in four steps:

1. Your ESQL/C program assembles the text of an SQL statement in a charac-
ter string variable.

2. Your program uses a PREPARE statement to ask the database server to
examine the statement text and prepare it for execution.

3. Your program executes the prepared statement.

4. Your program uses the FREE statement to explicitly free resources associ-
ated with the prepared statement id.

You can use a DESCRIBE statement with any previously prepared statement
to determine what type of statement was prepared. After a DESCRIBE state-
ment, if the value in SQLCODE is 0, a SELECT statement without an INTO
TEMP clause was prepared. If any other type of statement was prepared, the
value of SQLCODE is some positive number. You can test the SQLCODE value
against the values defined in sqlstype.h to determine what kind of statement
was prepared. See the section “Constants and sqlstype.h” on page 9-9 for
more information about using the defined constants.

Types of Dynamic Management Situations
In the following circumstances, the treatment of dynamically defined SQL
statements is more complicated than that of static SQL statements, which
were described in Chapter 1 of this manual. There are four situations for
which you need to use dynamic SQL:

• When your program contains an SQL statement that is not a SELECT state-
ment, uses no input parameters, and the statement is not known until run
time. This type of statement is sometimes known as a “non-parameter-
ized non-SELECT statement. (See “Non-SELECT Statements That Do Not
Receive Values at Run Time” on page 9-12.)

• When your program contains a SELECT statement and, at compile time,
you do not know the number or the data types of the columns or expres-
sions in the select list but you do know that the SELECT statement does
not have a WHERE clause. This type of statement is sometimes known as
a “non-parameterized SELECT statement.” (See “SELECT Statements in
Which Select-List Values Are Determined at Run Time” on page 9-13.)

• When your program contains a SELECT statement that requires input at
run time to provide information for the WHERE clause. You might or
might not know the number or data type of the parameters in the WHERE
9-4

The System Descriptor Area
clause. This type of statement is sometimes known as a “parameterized
SELECT statement.” (See “SELECT Statements That Receive WHERE-
Clause Values at Run Time” on page 9-21.)

• When your program contains a statement that is not SELECT but you do
not know the number or data type of the input parameters, such as an
INSERT. This type of statement is sometimes known as a “parameterized
non-SELECT statement.” (See “Non-SELECT Statements That Receive
Values at Run Time” on page 9-30.)

If you are not using these kinds of statements, you can skip the rest of this
chapter.

The last three types of statements require that you manage memory space for
variables at run time. You can use either of two methods of dynamic memory
management:

• Use system descriptor areas to hold the dynamic information. This is a
language-independent method that uses the ALLOCATE DESCRIPTOR,
GET DESCRIPTOR, or SET DESCRIPTOR statements in SQL. Use of the sys-
tem descriptor area conforms to X/Open standards.

• Use the sqlda structure to hold the dynamic information. This method
requires explicit use of the sqlda structure. Because it uses a C-language
structure within SQL statements, this method is not language indepen-
dent. Use of the sqlda structure does not conform to X/Open standards.

Both methods are outlined and described in this chapter. The system descrip-
tor area and the sqlda structure are described in detail in Chapter 6 of The
Informix Guide to SQL: Reference.

The System Descriptor Area
INFORMIX-ESQL/C uses a system descriptor area when your program con-
tains the ALLOCATE DESCRIPTOR, GET DESCRIPTOR, and SET DESCRIPTOR
statements. These statements allow you to handle the dynamic allocation of
memory and to pass data between the application program and the database
server.

A system descriptor area has a field for the count of values returned by a
SELECT statement or inserted in an INSERT statement. It also has a set of
fields for each value being input or returned. Figure 9-1 shows what a sys-
tem descriptor area looks like for two values.
9-5

The sqlda Structure
Figure 9-1 A system descriptor area for two values

The sqlda Structure
You use the sqlda structure when your program performs the dynamic mem-
ory allocation and you choose to allocate the memory for each of the dynamic
variables in your own code. You do not use the sqlda structure if you are
using the ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR state-
ment set.

COUNT=2
DATA
TYPE
LENGTH
INDICATOR
NAME
SCALE

PRECISION

NULLABLE

IDATA

ITYPE

Value 1

Value 2

ILENGTH

DATA

TYPE

LENGTH
INDICATOR
NAME
SCALE
PRECISION

NULLABLE

IDATA

ITYPE

ILENGTH
9-6

Constants in sqltypes.h
When all of its components are fully defined, the sqlda structure points to the
beginning of a sequence of sqlvar_struct structures that contain the neces-
sary information for each variable in the set. Figure 9-2 shows an sqlda struc-
ture.

struct sqlvar_struct {
short sqltype;
short sqllen;
char *sqldata;
short *sqlind;
char *sqlname;
char *sqlformat;
short sqlitype;
short sqlilen;
char *sqlidata;
};

struct sqlda {
short sqld;
struct sqlvar_struct *sqlvar;
};

Figure 9-2 Definition of the sqlda structure in sqlda.h

Constants in sqltypes.h
The sqltypes.h file contains two lists of defined integer constants for the data
types used by Informix database servers.

Defined Constants for Use with Dynamic Statements

Within an INFORMIX-ESQL/C program using dynamically defined SQL state-
ments, you can use the constants shown in Figure 9-3. The values listed are
those returned by a DESCRIBE statement into the TYPE field of a system
descriptor area or the sqltype field in an sqlda structure. Use them when ana-
lyzing the information returned by a DESCRIBE statement to either a system
descriptor area or an sqlda structure. You also can use the literal values when
setting the TYPE field with a SET DESCRIPTOR statement or setting the
sqltype field in an sqlda structure.
9-7

Constants in sqltypes.h
Constant SQL Data Type Integer Value

SQLCHAR CHAR 0
SQLSMINT SMALLINT 1
SQLINT INTEGER 2
SQLFLOAT FLOAT 3
SQLSMFLOAT SMALLFLOAT 4
SQLDECIMAL DECIMAL 5
SQLSERIAL SERIAL 6
SQLDATE DATE 7
SQLMONEY MONEY 8
SQLDTIME DATETIME 10
SQLBYTES BYTE 11
SQLTEXT TEXT 12
SQLVCHAR VARCHAR 13
SQLINTERVAL INTERVAL 14

Figure 9-3 Values returned by a DESCRIBE statement and their defined constants

If you are compiling with the -xopen flag, you cannot use the integer values
of the language-independent constants listed in Figure 9-3 in a SET
DESCRIPTOR statement. You must use the values shown in Figure 9-3 for
X/Open compatibility.

Constant SQL Data Type Integer Value

SQLCHAR CHAR 1
SQLSMINT SMALLINT 5
SQLINT INTEGER 4
SQLFLOAT FLOAT 6
SQLDECIMAL DECIMAL 3

Figure 9-4 Values returned by a DESCRIBE statement in an X/Open environment

When you fill an sqlda structure to indicate where and what kind of host
variables are used as input parameters to a dynamically defined SQL state-
ment, you can use the values shown in Figure 9-5 (for which constants are
defined in sqltypes.h) to identify the C data type.
9-8

Constants and sqlstype.h
Constant C Data Type Integer Value

CCHARTYPE char 100
CSHORTTYPE short int 101
CINTTYPE int 102
CLONGTYPE long 103
CFLOATTYPE float 104
CDOUBLETYPE double 105
CDECIMALTYPE dec_t 107
CFIXCHARTYPE fixchar 108
CSTRINGTYPE string 109
CDATETYPE long 110
CMONEYTYPE dec_t 111
CDTIMETYPE dtime_t 112
CLOCATORTYPE loc_t 113
CVCHARTYPE varchar 114
CINVTYPE intrvl_t 115
CFILETYPE char 116

Figure 9-5 Values that can be used to set the sqltype field in an sqlda structure

Constants and sqlstype.h
After you use the DESCRIBE statement, the database server sets SQLCODE to
a positive integer value that indicates the type of statement that was
described. That is, SQLCODE indicates whether the statement was an INSERT,
SELECT, CREATE TABLE, or any other statement. You can determine which
kind of statement was described by checking the value of SQLCODE against
a predefined set of values.
9-9

Constants and sqlstype.h
The sqlstype.h file contains the list of predefined integer constants for types
of SQL statements. A portion of the file is shown in Figure 9-6.

.

.

.
#define SQ_UPDATE 4
#define SQ_DELETE 5
#define SQ_INSERT 6
#define SQ_UPDCURR 7
#define SQ_DELCURR 8
#define SQ_LDINSERT 9
#define SQ_LOCK 10
.
.
.

Figure 9-6 A portion of the contents of the sqlstype.h file

The complete list of predefined integer constants for types of SQL statements,
and the full name of the statement, is shown in Figure 9-7 and Figure 9-8.

Statement Defined Constant Value
SELECT 0
DATABASE SQ_DATABASE 1
SELECT INTO SQ_SELINTO 3
UPDATE...WHERE SQ_UPDATE 4
DELETE...WHERE SQ_DELETE 5
INSERT SQ_INSERT 6
UPDATE WHERE CURRENT OF SQ_UPDCURR 7
DELETE WHERE CURRENT OF SQ_DELCURR 8
LOAD FROM INSERT INTO SQ_LDINSERT 9
LOCK SQ_LOCK 10
UNLOCK SQ_UNLOCK 11
CREATE DATABASE SQ_CREADB 12
DROP DATATBASE SQ_DROPDB 13
CREATE TABLE SQ_CRETAB 14
DROP TABLE SQ_DRPTAB 15
CREATE INDEX SQ_CREIDX 16
DROP INDEX SQ_DRPIDX 17
GRANT SQ_GRANT 18
REVOKE SQ_REVOKE 19
RENAME TABLE SQ_RENTAB 20
RENAME COLUMN SQ_RENCOL 21
CREATE AUDIT SQ_CREAUD 22

Figure 9-7 A portion of the contents of the sqlstype.h file and the corresponding statement type
(1 of 2)
9-10

Constants and sqlstype.h
Statement Defined Constant Value
DROP AUDIT SQ_DRPAUD 25
RECOVER TABLE SQ_RECTAB 26
CHECK TABLE SQ_CHKTAB 27
REPAIR TABLE SQ_REPTAB 28
ALTER SQ_ALTER 29
START DATABASE SQ_STATS 30
CLOSE DATABASE SQ_CLSDB 31
DELETE without WHERE SQ_DELALL 32
UPDATE without WHERE SQ_UPDALL 33
BEGIN WORK SQ_BEGWORK 34
COMMIT SQ_COMMIT 35
ROLLBACK SQ_ROLLBACK 36
START DATABASE SQ_STARTDB 38
ROLL FORWARD SQ_RFORWARD 39
CREATE VIEW SQ_CREVIEW 40
DROP VIEW SQ_DROPVIEW 41
CREATE SYNONYM SQ_CREASYN 43
DROP SYNONYM SQ_DROPSYN 44
CREATE TEMP TABLE SQ_CTEMP 45
SET LOCK MODE TO WAIT SQ_WAITFOR 46
ALTER INDEX SQ_ALTIDX 47
SET ISOLATION SQ_ISOLATE 48
SET LOG SQ_SETLOG 49
SET EXPLAIN SQ_EXPLAIN 50
CREATE SCHEMA SQ_SCHEMA 51
SET OPTIMIZATION SQ_OPTIM 52
CREATE PROCEDURE SQ_CREPROC 53
DROP PROCEDURE SQ_DRPPROC 54
SET CONSTRAINTS SQ_CONSTRMODE 55
EXECUTE PROCEDURE SQ_EXECPROC 56
SET DEBUG FILE TO SQ_DBGFILE 57
CREATE OPTICAL CLUSTER SQ_CREOPCL 58
ALTER OPTICAL CLUSTER SQ_ALTOPCL 59
DROP OPTICAL CLUSTER SQ_DRPOPCL 60
OPTICAL RESERVE SQ_OPRESERVE 61
OPTICAL RELEASE SQ_OPRELEASE 62
SET TIMEOUT SQ_OPTIMEOUT 63
UPDATE STATS...for procedure SQ_PROCSTATS 64

Figure 9-8 A portion of the contents of the sqlstype.h file and the corresponding statement type
(2 of 2)
9-11

Non-SELECT Statements That Do Not Receive Values at Run Time
Non-SELECT Statements That Do Not Receive Values at
Run Time

If you want to assemble a statement at run time, in many cases it is a simple
process. As long as it is not a SELECT statement, and as long as you know the
basic structure of the statement and all of the components when you write
your program, you can simply prepare and execute the statement.

For example, you can write a general-purpose deletion program that works
on any table. Your program would take the following steps:

1. Prompt the user for the name of the table and the text of the WHERE
clause and put the information into host variables such as $tabname and
$search_condition.

2. Create a text string by concatenating four components: DELETE FROM,
$tabname, WHERE, and $search_condition. For this example, call the
string stmt_buf.

3. Prepare the entire statement. The following PREPARE statement operates
on the string in stmt_buf and creates a statement id called d_id:

$PREPARE d_id FROM $stmt_buf;

4. Execute the statement. For this example, it uses the following EXECUTE
statement:

$EXECUTE d_id;

Using EXECUTE IMMEDIATE
Instead of preparing the statement and then executing it, you can prepare
and execute the statement in the same step using the EXECUTE IMMEDIATE
statement.

For example, for the DELETE statement used in the example in the previous
section, you can replace the PREPARE-EXECUTE statement sequence with the
following statement:

$EXECUTE IMMEDIATE $stmt_buf;
9-12

SELECT Statements in Which Select-List Values Are Determined at Run Time
SELECT Statements in Which Select-List Values Are
Determined at Run Time

In the SELECT statement described and illustrated in the example program in
Chapter 1 of this manual, the values returned from the query are placed into
host variables that are listed in an INTO clause. When your program creates
a SELECT statement at run time, you cannot use an INTO clause in the SELECT
statement because you do not know at compile time what host variables are
needed. Instead, you must use a system descriptor area or an sqlda structure
to hold the selected values.

Using Descriptors
Follow these steps to program the code using the system descriptor area for
a SELECT statement in which select-list values are determined at run time:

1. Prepare the SELECT statement (using the PREPARE statement) and give it
a statement identifier. For example, the statement id can be qid.

$PREPARE qid FROM "SELECT * FROM customer";

2. Declare a cursor for the prepared statement identifier (for example, name
the cursor q_cursor). All dynamically defined SELECT statements must
have a declared cursor. For example, the following statement declares the
cursor q_cursor for qid:

$DECLARE q_cursor CURSOR FOR qid;

3. Allocate a descriptor using the ALLOCATE DESCRIPTOR statement. Pro-
vide a name for the descriptor area. Also indicate the maximum number
of items that can be in the select list of the query. If you do not provide a
maximum, space is allocated for 100 returned items. The following state-
ment allocates a descriptor named demodesc, which has room for up to a
four-item select list:

$ALLOCATE DESCRIPTOR 'demodesc' WITH MAX 4;
9-13

Using Descriptors
4. Open the cursor.

$OPEN q_cursor

Note: If the SELECT statement has a WHERE clause (that is, it is receives
WHERE-clause values at run time), your program must handle the WHERE
clause as well. Information on handling SELECT statements that receive WHERE-
clause values at run time is contained in a later section of this chapter.

5. Determine the contents of the select list of the query. To do this, use the
DESCRIBE statement with the descriptor that you allocated for the
returned values. For example, the following statement describes the pre-
pared query qid into the demodesc descriptor:

$DESCRIBE qid USING SQL DESCRIPTOR 'demodesc';

6. Use the GET DESCRIPTOR statement to determine the count of values in
the select list by looking at the COUNT field of the descriptor. For exam-
ple, the following statement puts the count of the values in the select list
into the desc_count host variable:

$GET DESCRIPTOR 'demodesc' $desc_count = COUNT;

7. Determine the type, length, name, and other information about each of
the values described into the descriptor; your program needs this infor-
mation for formatting or processing. For example, to determine the type
of the third value in a select list, use the following statement:

$GET DESCRIPTOR 'demodesc' VALUE 3 $type_int = TYPE;

8. Fetch each row of values returned with the SELECT statement in a loop
until no more rows are found (SQLNOTFOUND). After each FETCH state-
ment, use the GET DESCRIPTOR statement on each value in the select list
to load the contents of the DATA field into an appropriate host variable
9-14

Using Descriptors
for your program to use. For example, the following statement copies the
data for the first value into the result host variable:

while (sqlca.sqlcode != 100)
{ $fetch q_cursor using sql descriptor 'demodesc';
for (i = 1; i <= $desc_count; i++)

{$GET DESCRIPTOR "demodesc" VALUE $i $result = DATA;
.
.
.
}

.

.

.
}

9. After all of the rows are fetched, close the cursor.

Example of a SELECT Statement Using Descriptors

This example is a modified version of the demo4.ec program. It uses the GET
DESCRIPTOR and SET DESCRIPTOR statements to run a SELECT statement in
which select-list values are determined at run time.

/*
 * This demo program is a version of the demo demo4.ec that
 * uses the X/OPEN GET/SET DESCRIPTOR
 */
#include <stdio.h>
$include sqlca;
$include sqlda;

/* Uncomment the following line if the database has
 transactions: */

/* $define TRANS; */

$define NAME_LEN 15;

main()
{
 $int i;
 $int desc_count;
 $char demoquery[80];
 $char queryvalue[2];
 $char result[NAME_LEN + 1];

 /* These next four lines have hard-wired
 * the query .
 * This information could have been entered
 * from the terminal and placed into the string
 * demoquery.
 */
9-15

Using Descriptors
 sprintf(demoquery, "%s ",
 "select fname, lname from customer");

 printf("Modified DEMO4 Sample ESQL program running.\n\n");

 $database stores5;
 $prepare qid from $demoquery;
 $declare democursor cursor for qid;
 $allocate descriptor 'demodesc' with max 4;

 $ifdef TRANS;
 $begin work;
 $endif;

 $open democursor;
 $describe qid using sql descriptor 'demodesc';
 $get descriptor 'demodesc' $desc_count = count;

 printf("There are %d returned columns:\n", desc_count);
 /* Print out what DESCRIBE returns */
 for (i = 1; i <= desc_count; i++)

prsqlda(i);

 printf("\n\n");
 for (;;)

 {
 $fetch democursor using sql descriptor 'demodesc';
 if (sqlca.sqlcode != 0) break;
 for (i = 1; i <= desc_count; i++)
 {
 $ get descriptor 'demodesc' value $i $result = data;
 printf("%s ", result);
 }
 printf("\n");
 }

 $close democursor;

 $ifdef TRANS;
 $commit work;
 $endif;

 printf("\nProgram Over.\n");
}

prsqlda(index)
 $ parameter int index;
{
 $ int type;
 $ int len;
 $ char name[40];

 $ get descriptor 'demodesc' value $index
 $type = type,
 $len = len,
 $name = name;

 printf(" Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

}

9-16

Using an sqlda Structure
Using an sqlda Structure
Follow these steps to program the code using an sqlda structure for a SELECT
statement in which select-list values are determined at run time:

1. Declare a pointer to an sqlda structure. For example, name it udesc.

2. Prepare the SELECT statement (with the PREPARE statement) and give it a
statement identifier. For example, name the statement identifier u_query.

3. Use the DESCRIBE statement to analyze the values returned by the SELECT
statement (the number and type of columns and values in the select list).
The analysis is stored in the sqlda structure. For example, use the follow-
ing statement:

$DESCRIBE u_query INTO udesc;

This DESCRIBE statement causes udesc->sqlvar to point to a sequence of
partially filled sqlvar_struct structures. (udesc->sqld gives the number of
sqlvar_struct structures.) The components of each sqlvar_struct structure
that are filled by the DESCRIBE statement for each item of the select list are
sqltype, sqllen (for CHAR type data or a qualifier for DATETIME or
INTERVAL), and sqlname.

4. After looking at each of the sqltype and sqllen fields filled by the
DESCRIBE statement, your program must allocate memory for the sqldata
field appropriately. (This involves using a function like malloc() and
assigning proper word boundaries, depending on the data type and, in
the case of CHAR variables, the length of the variable.)

5. Declare a cursor for the prepared statement identifier (for example, name
the cursor u_cursor). All dynamically defined SELECT statements must
have a declared cursor. For example, the following statement declares the
cursor u_cursor for u_query:

$DECLARE u_cursor cursor FOR u_query;
9-17

Using an sqlda Structure
6. Open the cursor with the OPEN statement. For example, the following
statement opens the u_cursor cursor:

$OPEN u_cursor;

Note: If the SELECT statement has a WHERE clause (that is, it receives WHERE-
clause values at run time), your program must handle the WHERE clause as well.
Information on handling SELECT statements that receive WHERE-clause values
at run time is contained in a later section of this chapter.

7. Retrieve the first set of values from the SELECT statement by issuing a
FETCH statement. For example, the following statement gets the first set
of values from the SELECT statement prepared in step 2.

$FETCH u_cursor USING DESCRIPTOR udesc;

This statement assigns values to the variables pointed to by the various
sqldata pointers.

8. Repeat the FETCH statement until there are no more rows.

9. Close the cursor with the CLOSE statement.

Example of a SELECT Statement Using the sqlda Structure

To illustrate this process, consider the program fragment shown in
Figure 9-10, in which all error checking is suppressed. This example assumes
that a SELECT statement is assembled at run time and stored in the q_string
string. For the sake of this example, let q_string contain the statement shown
in Figure 9-9.

select order_num, order_date from orders

Figure 9-9 Query in q_string
9-18

Using an sqlda Structure
$include sqlca;
$include sqlda;

.

.

.
/* declare pointer to structure that

apportions the data from each row */
struct sqlda *q_desc;

/* declare host variable to hold
statement string */

$ char q_string[128];

/* make stores5 the current database */
$ database stores5;

.

.

.
/* At this point the SELECT statement

is assigned to q_string */

/* prepare the SELECT statement */
$ prepare q_id from $q_string;

/* identify the select-list */
$ describe q_id into q_desc;

/* this section of the code must
allocate variables to receive
the data from the rows and
set the pointers in q_desc.
See the following discussion */

/* associate q_cursor with SELECT
statement */

$ declare q_cursor cursor for q_id;

/* open q_cursor; create active set */
$ open q_cursor;

/* loop through rows in active set */
for(;;)
{

/* fetch next row from the active set */
$ fetch q_cursor

using descriptor q_desc;

/* process data if fetch returned a row */
if (sqlca.sqlcode == 0)
{
/* process data */
.
.
.
}
else
{
/* out of data */
break;
}
}

Figure 9-10 Sequence of statements to use an sqlda structure
9-19

Using an sqlda Structure
After including the header files and declaring the relevant variables, the pro-
gram selects the stores5 database as the current database. Once the query is
stored in the q_string string, it is prepared and associated with the q_id iden-
tifier. Since the statement is a query, the program then declares a q_cursor
cursor so that the rows that are returned can be examined one at a time. The
OPEN statement that follows opens the cursor and defines an active set of
rows for the SELECT statement.

The complex part of this program fragment follows the DESCRIBE statement
and is not shown in detail. The sqlda component q_desc->sqld now has the
value 2, since two columns were selected from the orders table. The compo-
nent q_desc->sqlvar[0] is the sqlvar_struct structure that contains informa-
tion on the order_num column of the orders table. The component
q_desc->sqlvar[1] is the sqlvar_struct structure that contains information on
the order_date column of the orders table. The q_desc->sqlvar[0].sqltype
component, for example, gives the SQL data type of the first column
(order_num) requested.

Dynamically Allocating Memory

You must allocate memory storage for each of the variables returned by the
query. You must set the sqldata pointer for each value returned to the loca-
tion that receives the value. This process can require aligning data types with
proper word boundaries. You can use the rtypalign function described in
Chapter 5 of this manual for this purpose.

When you dynamically allocate dtime_t structures to receive DATETIME val-
ues, you can set their qualifiers from the associated sqllen fields. Alterna-
tively, you can compose a different qualifier (using the values defined in
datetime.h) and the database value is extended to match it.

When you dynamically allocate intrvl_t structures to receive INTERVAL val-
ues, you should always initialize its qualifier from sqllen. Alternatively, you
can set its qualifier to zero, and the qualifier from the database column is set
during the fetch.

In the preceding example, the DESCRIBE statement allocated memory for the
necessary number of sqlvar_struct structures. It filled in sqltype and sql-
name, and set to null the sqldata and sqlind pointers. You must set sqldata
and sqlind (if desired) to point to the appropriate memory. If you do not use
the DESCRIBE statement to create the sqlvar_struct structures, you must
remember to set the indicator variable pointers to null.

The unload.ec example program supplied with ESQL/C illustrates the use of
the sqlda structure with a SELECT statement in which select-list values are
determined at run time.
9-20

SELECT Statements That Receive WHERE-Clause Values at Run Time
SELECT Statements That Receive WHERE-Clause
Values at Run Time

Since DESCRIBE statements examine only the select list—that is, the list of col-
umn names or expressions in the SELECT clause—they do not tell you about
parameters in the WHERE clauses.

You must know the number of parameters in the SELECT statement and their
data types. Unless you are writing a general-purpose, interactive interpreter,
you usually have this information. If you do not have it, you must write code
that determines not only how many question marks (?) appear in the
dynamic query, but also the data types to which they belong.

When you know the number of parameters and their data types at compile
time, you can declare appropriate host variables to receive the parameter val-
ues and run the query using those values.

When you determine the number of parameters and their data types at com-
pile time, you have two options:

• Use a system descriptor area to pass data to the query.

• Allocate memory for an sqlda structure to pass data to the query.

The rest of this section outlines how to handle SELECT statements that receive
WHERE-clause values at run time.

Using Host Variables
Follow these steps to use host variables with SELECT statements that receive
WHERE-clause values at run time:

1. Declare a host variable for each parameter in the WHERE clause of the
SELECT statement.

2. Prepare the SELECT statement. It must contain a ? for each missing value
in the WHERE clause.

3. Associate a cursor with the prepared SELECT statement by using the
DECLARE statement.

4. Assign a value to the host variable for each parameter. (These values
probably would be obtained interactively in an application.)

5. Use the OPEN statement with the USING clause to associate the host vari-
ables (and their contents) with the question marks in the prepared SELECT
statement.
9-21

Using Host Variables
6. Use the FETCH statement to get the first set of values returned by the pre-
pared SELECT statement. Repeat the FETCH statement until no more rows
are returned.

7. Close the cursor using the CLOSE statement.

If the host variables corresponding to the parameters in the SELECT statement
are hvar1, hvar2, and hvar3, you must execute the OPEN statement, as shown
in the program fragment in Figure 9-11.

$include sqlca
...

/* declare parameter variables */
$ longhvar1;
$ longhvar2;
$ longhvar3;

/* make stores5 the current database */
$ database stores5;

/* prepare the select statement */
$ prepare q_id from

"select order_num, customer_num
from orders
where order_date = ?

or paid_date = ?
or ship_date = ?";

/* associate q_cursor with SELECT statement */
$ declare q_cursor cursor for q_id;

/* this section of the program would
assign values to hvar1, hvar2, and hvar3 /

*
...

/* open q_cursor to create the active set */
$ open q_cursor using $hvar1, $hvar2, $hvar3;

...

Figure 9-11 Program fragment that uses host variables with a cursor
9-22

Using Host Variables
Example of Using Host Variables in a Program

The demo2.ec example program distributed with INFORMIX-ESQL/C uses a
host variable to hold the value of the parameter for a SELECT statement. The
demo2.ec program is shown in Figure 9-12.

#include <stdio.h>
$include sqlca;

/* Uncomment the following line if the database has
 transactions: */

/* $define TRANS; */

$define FNAME_LEN 15;
$define LNAME_LEN 15;

main()
{
$char demoquery[80];
$char queryvalue[2];
$char fname[FNAME_LEN + 1];
$char lname[LNAME_LEN + 1];

/* These next four lines have hard-wired both
 * the query and the value for the parameter.
 * This information could have been entered
 * from the terminal and placed into the strings
 * demoquery and queryvalue, respectively.
 */
sprintf(demoquery, "%s %s",
 "select fname, lname from customer",
 "where lname > ? ");
sprintf(queryvalue, "C");

printf("DEMO2 Sample ESQL program running.\n\n");

$database stores;
$prepare qid from $demoquery;
$declare democursor cursor for qid;

$ifdef TRANS;
$begin work;
$endif;

$open democursor using $queryvalue;
9-23

Using a System Descriptor Area
if (sqlca.sqlcode)
 printf("%s %d\n",
 "sqlca.code, after the cursor open, is",
 sqlca.sqlcode);

for (;;)
 {
 $fetch democursor into $fname, $lname;
 if (sqlca.sqlcode != 0) break;
 printf("%s %s\n", fname, lname);
 }
if (sqlca.sqlcode != SQLNOTFOUND)
 printf("%s %d\n",
 "sqlca.code, after fetch, is",
 sqlca.sqlcode);

$close democursor;

$ifdef TRANS;
$commit work;
$endif;

printf("\nProgram Over.\n");
}

Figure 9-12 The text of the demo2.ec example program

Using a System Descriptor Area
Your code must take the following steps to use a system descriptor area with
a SELECT statement that receives WHERE-clause values at run time. The first
four steps are common to SELECT statements that receive WHERE-clause val-
ues at run time and SELECT statements in which select-list values are deter-
mined at run time.

1. Declare host variables to interactively hold the data obtained from the
user.

2. Prepare the SELECT statement (using the PREPARE statement) and give it
a statement identifier. The SELECT statement must contain a ? for each
missing value in the WHERE clause. For example, the statement id can be
qid.

$PREPARE qid FROM
"select * from customer where lname > ?";

3. Declare a cursor for the prepared statement identifier (for example, name
the cursor q_cursor). All dynamically defined SELECT statements must
9-24

Using a System Descriptor Area
have a declared cursor. For example, the following statement declares the
cursor q_cursor for qid:

$DECLARE q_cursor CURSOR FOR qid;

4. Allocate a descriptor using the ALLOCATE DESCRIPTOR statement. Pro-
vide a name for the descriptor area. Also indicate the maximum number
of items that can be in the select list of the query. If you do not provide a
maximum, space is allocated for 100 returned items. The following
statement allocates a descriptor named demodesc, which has room for up
to a four-item select list:

$ALLOCATE DESCRIPTOR 'demodesc' WITH MAX 4;

5. Your C code must analyze the WHERE clause of the SELECT statement to
determine how many and what type of parameters are in the WHERE
clause.

6. Once you determine the number of question marks in the query, you must
use an ALLOCATE DESCRIPTOR statement to allocate a descriptor large
enough to handle the filter variables. You can use the descriptor allocated
in step 4, if it is large enough.

7. Use the SET DESCRIPTOR statement to set the COUNT field in the descrip-
tor to the number of parameters (question marks) in the WHERE clause.
For example, if three question marks are in the WHERE clause, your pro-
gram must set COUNT to 3.

$SET DESCRIPTOR 'demodesc' COUNT = 3;

8. Issue a SET DESCRIPTOR statement for each of the question marks (filter
values) in the SELECT statement. The SET DESCRIPTOR statement must set
the TYPE and DATA fields of the descriptor area. If you are setting the
descriptor for a CHAR or VARCHAR item, you also must provide a value
for the LENGTH field. The other fields are optional. The following state-
9-25

Using a System Descriptor Area
ment sets the first value in the descriptor area for a character value with
a value assigned from the hostchar host variable:

$SET DESCRIPTOR 'demodesc' VALUE 1
TYPE = 0,
LENGTH = 15,
DATA = $hostchar;

Note: If you are using X/Open code (and compiling with the -xopen flag), you
must use the literal integer values listed in Figure 9-3 on page 9-8 in the TYPE
field of the SET DESCRIPTOR statement. For the preceding example, TYPE would
be 1 rather than 0.

9. Once you set all the necessary information for each VALUE, open a cursor
using the descriptor. For the previous SET DESCRIPTOR statement, the
OPEN statement is as follows:

$OPEN q_cursor USING SQL DESCRIPTOR 'demodesc';

10. Fetch each row of values returned with the SELECT statement in a loop
until no more rows are found (SQLNOTFOUND). For example, the follow-
ing FETCH statement puts the results of the query into the col1, col2, and
col3 host variables. (You can put the results into host variables if you
know the contents of the select list at compile time. If you do not know
the list of columns in the select list at compile time, you must apply the
techniques described in the section“SELECT Statements in Which Select-
List Values Are Determined at Run Time” on page 9-13 to determine the
contents of the select list.)

while (sqlca.sqlcode != 100)
{
$FETCH q_cursor INTO $col1, $col2, $col3;
/* Do something with results */
}

11. After all of the rows are fetched, use the CLOSE statement to close the
cursor.
9-26

Using a System Descriptor Area
Example of Using a System Descriptor Area

The program in Figure 9-13 is a modified version of the demo4.ec example
program. It illustrates the use of a system descriptor area to handle both
input parameters and the values in the select list.

/*
 * This program is a modified version of the demo4.ec that
 * uses the X/OPEN GET/SET DESCRIPTOR. This program shows how to use
 * a system descriptor for the parameters of a SELECT statement.
 */
#include <stdio.h>
$include sqlca;
$include sqlda;

/* Uncomment the following line if the database has
 transactions: */

/* $define TRANS; */

$define NAME_LEN 15;

main()
{
 $int i;
 $int desc_count;
 $char demoquery[80];
 $char queryvalue[2];
 $char result[NAME_LEN + 1];

 /* These next three lines have hard-wired both
 * the query and the value for the parameter.
 * This information could have been entered
 * from the terminal and placed into the strings
 * demoquery and queryvalue, respectively.
 */
 sprintf(demoquery, "%s %s",

 "select fname, lname from customer",
 "where lname > ? ");

/* This section of the program must evaluate $demoquery
 * to count how many question marks are in the where clause
 * and what kind of data type is expected for each question mark.
 * For this example, there is one paramter of type char(15).
 * It would then obtain the value for $queryvalue. The value of
 * queryvalue is hard-wired in the next line.
 */

sprintf(queryvalue, "C");

 printf("Modified DEMO4 Sample ESQL program running.\n\n");

 $database stores;
 $prepare qid from $demoquery;
 $declare democursor cursor for qid;
 $allocate descriptor 'demodesc' with max 4;

 $ifdef TRANS;
 $begin work;
 $endif;
9-27

Using a System Descriptor Area
/*number of parameters to be held in descriptor is 1 */
$ SET DESCRIPTOR "demodesc" COUNT = 1;

/* Put the value of the parameter into the descriptor */
$ SET DESCRIPTOR "demodesc" VALUE 1

TYPE = 0, LENGTH = 15, DATA = $queryvalue;
/* Associate the cursor with the parameter value */
$open democursor using sql descriptor $demodesc;

/*Reuse the descriptor to determine the contents of the Select-list*/
 $describe qid using sql descriptor 'demodesc';
 $get descriptor 'demodesc' $desc_count = count;

 printf("There are %d returned columns:\n", desc_count);
 /* Print out what DESCRIBE returns */
 for (i = 1; i <= desc_count; i++)

prsqlda(i);

 printf("\n\n");
 for (;;)

 {
 $fetch democursor using sql descriptor 'demodesc';
 if (sqlca.sqlcode != 0) break;
 for (i = 1; i <= desc_count; i++)
 {
 $ get descriptor 'demodesc' value $i $result = data;
 printf("%s ", result);
 }
 printf("\n");
 }

 $close democursor;

 $ifdef TRANS;
 $commit work;
 $endif;

 printf("\nProgram Over.\n");
}

prsqlda(index)
 $ parameter int index;
{
 $ int type;
 $ int len;
 $ char name[40];

 $ get descriptor 'demodesc' value $index
 $type = type,
 $len = length,
 $name = name;

 printf(" Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

}

Figure 9-13 Program that uses a system descriptor area for input and output values
9-28

Using an sqlda Structure
Using an sqlda Structure
Follow these steps to use an sqlda structure with a SELECT statement that
receives WHERE-clause values at run time:

1. Declare host variables to interactively hold the data obtained from the
user. Declare a pointer to an sqlda structure to hold the parameter
information.

2. Prepare the SELECT statement. It must contain a ? for each missing value
in the WHERE clause.

3. Associate a cursor with the prepared SELECT statement by using the
DECLARE statement.

4. Using C code, determine the number and type of each parameter (or ques-
tion mark) in the prepared statement.

5. Assign the total number of parameters to the sqld field in the structure
sqlvar_struct. Allocate the memory for each variable in the sqlvar_struct
in the sqlda structure.
9-29

Non-SELECT Statements That Receive Values at Run Time
6. Assign values to the appropriate fields in the sqlvar_struct, as follows:

sqlvar is a pointer to an array of sqlvar_struct structures.

sqltype is an integer that represents the data type of the col-
umn involved. You can use the predefined constants
in sqltypes.h rather than literal values.

sqllen is the size, in bytes, of a character array (for CHAR
and VARCHAR); the encoded qualifiers for
DATETIME, and INTERVAL.

sqldata is the name of the host variable that contains the
data.

sqlind is the name of the indicator variable.

7. Once you set all the necessary information for each parameter, open a cur-
sor using the sqlda pointer to associate the host variables (and their
contents) with the question marks in the prepared SELECT statement. For
example, if you declared in_vals as the pointer to an sqlda structure, the
OPEN statement is as follows:

$OPEN q_cursor USING DESCRIPTOR in_vals ;

8. Use the FETCH statement to get the first set of values returned by the pre-
pared SELECT statement. Repeat the FETCH statement until no more rows
are returned.

9. Close the cursor using the CLOSE statement.

Non-SELECT Statements That Receive Values at Run
Time

There are three kinds of non-SELECT statements that receive values at run
time:

• INSERT

• DELETE...WHERE

• UPDATE...WHERE

For an INSERT statement, the values being inserted are called the parameters.
The type and number of the values being inserted are not known at compile
time, so you cannot simply use host variables to hold the data being inserted.
9-30

Using Host Variables
The DELETE and UPDATE statements can both contain a WHERE clause. Using
a dynamic DELETE or UPDATE statement is similar to using a SELECT state-
ment that receives WHERE-clause values at run time, but your program
associates the parameters to the prepared statement in an EXECUTE statement
rather than in an OPEN statement. If a DELETE or UPDATE statement is used
dynamically, your program must take the following steps:

1. The statement must first be prepared using the PREPARE statement.

2. Your code should describe the statement and check the value of sqlwarn4
in the sqlca structure. If sqlwarn4 contains a W, the DELETE or UPDATE
statement does not contain a WHERE clause and, if executed, all of the
rows in the table are deleted or updated.

3. The prepared statement id is executed using the EXECUTE statement with
the appropriate USING clause. You can use host variables, a system
descriptor area, or an sqlda structure to hold the parameters.

Using Host Variables
If the number of parameters and their data types are known at compile time,
a prepared SQL statement can be executed with the names of the host vari-
ables that hold the parameter data. A DELETE or UPDATE statement that
requires three parameters, the value of which is stored in $hvar1, $hvar2, and
$hvar3 and which was prepared with the stateid identifier, can be run with
the following statement:

$EXECUTE stateid USING $hvar1, $hvar2, $hvar3;

Using a System Descriptor Area
Take the following steps to use a system descriptor area to hold the informa-
tion about the parameters in the WHERE clause:

1. Allocate a descriptor large enough to hold the parameters with the
ALLOCATE DESCRIPTOR statement.

$ALLOCATE DESCRIPTOR 'up_desc' WITH MAX 10;

2. For each parameter, use the SET DESCRIPTOR statement to set the TYPE
and associate the host variable that holds the data with the descriptor
field. The following example sets the second value in the up_desc
descriptor to an integer value (TYPE = 2) that receives its data from the
9-31

Using a System Descriptor Area
host variable called h_int. This is used for the second ? in the WHERE
clause.

$SET DESCRIPTOR 'up_desc' VALUE 2
TYPE = 2, DATA = $h_int;

3. Use the EXECUTE statement with the USING SQL DESCRIPTOR clause. For
example, the following statement associates information about the
parameters held in up_desc with the prepared statement called stateid:

$EXECUTE stateid USING SQL DESCRIPTOR 'up_desc';

Example of Using SET DESCRIPTOR with a Locator Structure

The program in Figure 9-14 is an example of how to use a dynamic INSERT
statement. The INSERT statement “insert into a value (?,?)” is hard coded
here, but it can be created at run time. The two values inserted are blobs.
Notice the use of an ESQL/C macro CLOCTYPE.

#include <locator.h>

$ define CLOCTYPE 113;

main()
{
 $ int i;
 $ int cnt;
 $ loc_t loc1;
 $ loc_t loc2;

 $ create database test;
 chkerr("CREATE DATABASE");
 $ create table a (t1 text not null, t2 text);
 chkerr("CREATE TABLE");
 $ allocate descriptor "desc";
 chkerr("ALLOCATE");
/* The INSERT statement could have been created at run-time. */
 $ prepare sid from "insert into a values (?, ?)";
 chkerr("PREPARE");
 $ describe sid using sql descriptor "desc";
 chkerr("DESCRIBE");
 $ get descriptor "desc" $cnt = count;
 chkerr("GET DESCRIPTOR");
 for (i = 1; i <= cnt; i++)

prsqlda(i);

 loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
 loc1.loc_fname = loc2.loc_fname = "d1.ec";
 loc1.loc_size = loc2.loc_size = -1;
 loc1.loc_oflags = LOC_RONLY;
 $ set descriptor "desc" value 1 type = CLOCTYPE,

 data = $loc1;
9-32

Using an sqlda Structure
 chkerr("SET DESC 1");
 $ set descriptor "desc" value 2 type = CLOCTYPE,

 data = $loc2;
 chkerr("SET DESC 2");
 $ execute sid using sql descriptor "desc";
 chkerr("EXECUTE");
 loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
 loc1.loc_fname = "out1";
 loc2.loc_fname = "out2";
 loc1.loc_oflags = LOC_WONLY;

 $ select * into $loc1, $loc2 from a;
 chkerr("SELECT");
 $ close database;
 chkerr("CLOSE DATABASE");
 $ drop database test;
 chkerr("DROP DATABASE test");
}

prsqlda(index)
 $ parameter int index;
{
 $ int type;
 $ int len;
 $ int nullable;
 $ char name[40];

 $ get descriptor 'desc' value $index
 $type = type,
 $len = length,
 $nullable = nullable,
 $name = name;

 printf(" Column %d: type = %d, nullable = %d, len = %d, name = %s\n",
index, type, nullable, len, name);

}

chkerr(s)
char *s;
{
if (SQLCODE) printf("%s error %ld\n", s, SQLCODE);
}

Figure 9-14 Example of using a system descriptor area with an INSERT statement

Using an sqlda Structure
If the number of parameters is not known until run time and the parameter
data is entered into the sqlda structure pointed to by in_vals, the dynamic
statement stateid is run with the statement:

EXECUTE stateid USING DESCRIPTOR in_vals;
9-33

Using an sqlda Structure
9-34

Chapter
10

List of INFORMIX-
ESQL/C Routines
List of Routines 3

10-2

List of Routines
All of the library routines provided with INFORMIX-ESQL/C are listed in
alphabetical order, as follows:

Function name Description Page
bycmpr Compares two groups of contiguous bytes 3-5
bycopy Copies bytes from one area to another 3-7
byfill Fills the specified area with a character 3-9
byleng Counts the number of bytes in a string 3-11
decadd Add two decimal numbers 4-25
deccmp Compare two decimal numbers 4-31
deccopy Copy a decimal number 4-33
deccvasc Convert a C char type to a decimal type 4-6
deccvdbl Convert a C double type to a decimal type 4-20
deccvint Convert a C int type to a decimal type 4-12
deccvlong Convert a C long type to a decimal type 4-16
decdiv Divide two decimal numbers 4-25
dececvt Convert a decimal value to an ASCII string 4-35
decfcvt Convert a decimal value to an ASCII string 4-35
decmul Multiply two decimal numbers 4-25
decround Round a decimal number 4-41
decsub Subtract two decimal numbers 4-25
dectoasc Convert a decimal type to a C char type 4-9
dectodbl Convert a decimal type to a C double type 4-22
dectoint Convert a decimal type to a C int type 4-14
dectolong Convert a decimal type to a C long type 4-18
dectrunc Truncate a decimal number 4-43
dtcurrent Get current date and time 5-30
dtcvasc Convert an ANSI-compliant character string

to datetime 5-32
dtcvfmtasc Convert a character string to datetime 5-35
dtextend Change the qualifier of datetime 5-37
dttoasc Convert a datetime to an ANSI-compliant

 character string 5-42
dttofmtasc Convert a datetime to a character string 5-42
incvasc Convert an ANSI-compliant character string

to interval 5-44
incvfmtasc Convert a character string to interval 5-46
intoasc Convert an interval to an ANSI-compliant

 character string 5-48
10-3

List of Routines
intofmtasc Convert an interval to a string 5-50
ldchar Copies a fixed-length string to a

null-terminated string 3-13
rdatestr Convert an internal format to string 5-5
rdayofweek Return the day of the week 5-7
rdefmtdate Convert string to an internal format 5-9
rdownshift Converts all letters to lowercase 3-15
rfmtdate Convert an internal format to a string 5-12
rfmtdec Convert a decimal type to a formatted

string 4-45
rfmtdouble Convert a double to a string 2-37
rfmtlong Convert a long integer to a formatted string 2-40
rgetmsg Convert an error message integer into a string 7-13
risnull Check whether the C variable is null 2-13
rjulmdy Return month, day, and year from an internal

format 5-15
rleapyear Determine whether it is a leap year 5-17
rmdyjul Return an internal format from month, day,

and year 5-19
rsetnull Set a C variable to null 2-16
rstod Converts a string to double 3-16
rstoi Converts a string to short 3-18
rstol Converts a string to long 3-20
rstrdate Convert a string to an internal format 5-21
rtoday Return a system date in internal format 5-23
rtypalign Align data on a proper type boundary 2-19
rtypmsize Give byte size of SQL data types 2-22
rtypname Convert a data type to a string 2-25
rtypwidth Give minimum conversion byte size 2-28
rupshift Convert all letters to uppercase 3-22
sqlbreak Send the database server a request to stop

processing 8-4
sqldetach Detach child process from parent process 8-5
sqlexit Terminate a database server process 8-6
sqlstart Start a database server process 8-7
stcat Concatenates one string to another 3-23
stchar Copies a null-terminated string to a

fixed-length string 3-25
stcmpr Compares two strings 3-27
stcopy Copies one string to another string 3-29
stleng Counts the number of bytes in a string 3-30
10-4

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix ESQL/C Programmer’s Manual

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices A-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix ESQL/C Programmer’s Manual

Index
A
ANSI

checking for Informix extensions 1-23
compliance Intro-13
error handling considerations 7-6
function parameter syntax 1-17
use of EXEC SQL keywords 1-7

ansi flag 1-21, 1-23
Array

and non-NULL SQL value 1-18
declaration of variables 1-14
in a host-variable typedef 1-15
limit on size 1-14
use within ESQL/C statements 1-14

B
Binary Large Object (blob) 1-13, 6-3
Blob

See Binary Large Object
BLOB data type 1-13
Block

defining 1-12
nesting 1-12

bycmpr() library function 3-5
bycopy() library function 3-7
byfill() library function 3-9
byleng() library function 3-11
BYTE data type 2-4, 6-3

C
C function calls

DATE type routines listed 5-4
DATETIME type routines listed 5-28
DECIMAL type routines listed 4-5
INTERVAL type routines listed 5-28
numeric formatting routines listed 2-31

2 Index
C program structure
dynamic SQL statements 9-4
embedding SQL statements 1-4
error handling 7-5
header files 1-5
host variables 1-9
indicator variables 1-17
sqlca structure 7-5
sqlda structure 9-4

C programs
compiling 1-20
embedding SQL statements in 1-4

Case sensitivity 1-4
CHAR data type 1-13
CLOCTYPE macro 9-32
Colon (:)

between main variable and indicator
variable 1-18

preceding host variables 1-9
specifying indicator variable 1-18

Comments, in ESQL/C program 1-5
Compiler

and .ec extension 1-20
CC 1-27
creating an object file 1-20
diagnosing errors 1-11
esqlcargs 1-21
esql, for ESQL/C programs 1-20
linking library functions 3-3
preprocessing 1-20
syntax 1-21

Conditional compilation statements 1-7
Conventions

command line Intro-5
typographical Intro-5

Conversion
from DATE to DATETIME 2-10, 5-27
from DATETIME to DATE 2-9, 5-27
of data types 2-6
when fetching DATETIME 5-26
when fetching INTERVAL 5-26
when storing DATETIME 5-27
when storing INTERVAL 5-27

COUNT field
after a DESCRIBE 9-14
setting for input values 9-25

cs compile option Intro-15, 1-21, 1-26
Cursor

multiple Intro-16

names, case sensitivity 1-26
names,case sensitivity 1-4
scope of name 1-26

D
dash,double (--) 1-5
Data conversion

among data types 2-6
from DATE to DATETIME 2-10, 5-27
from DATETIME to DATE 2-9, 5-27
when fetching DATETIME 5-26
when fetching INTERVAL 5-26
when storing DATETIME 5-27
when storing INTERVAL 5-27

DATA field
after a FETCH 9-14
setting for input values 9-25

Data types
and declaration of array 1-14
DATE 5-3
DATETIME 5-24
DECIMAL 4-3
decimal structure 4-4
decimal.h 4-4
dec_t 4-4
defined in sqltypes.h 9-7
dtime_t 5-24
fixchar 2-6
INTERVAL 5-24
intrvl_t 5-24
relation of C and SQL 1-12, 2-3
string 2-6
type conversion 2-6

Database
engine control routine 8-4, 8-6, 8-7
stores Intro-11

Database variable, discrepancy with host
variable 2-6

DATE data type 1-13, 2-4
converting to DATETIME data type

2-10, 5-27
definition of 5-3
rdatestr() 5-5
rdayofweek() 5-7
rdefmtdate() 5-9
rfmtdate() 5-12
rjulmdy() 5-15
rleapyear() 5-17
rmdyjul() 5-19
rstrdate() 5-21

rtoday() 5-23
DATETIME

columns defined 5-24
converting to DATE 2-9, 5-27
data conversion when fetching 5-26
data conversion when storing 5-27
declaration of host variable 5-25
dynamically allocating structures for

9-20
fetching values 5-26
storing values 5-27

DATETIME data type 1-13, 2-4
columns defined 5-24
converting to DATE data type 2-9,

5-27
data conversion when fetching 5-26
data conversion when storing 5-27
declaration 5-25
definition of 5-24
dtcurrent() 5-30
dtcvasc() 5-32
dtextend() 5-37
dttoasc() 5-40
fetching values 5-26
host variables of 5-25
incvasc() 5-44
intoasc() 5-48
storing values 5-27

DBANSIWARN environment variable
1-23, 7-11

decadd() decimal manipulation routine
4-25

deccmp() decimal manipulation routine
4-31

deccopy() decimal manipulation routine
4-33

deccvasc() decimal manipulation routine
4-6

deccvint() decimal manipulation routine
4-12

deccvlong() decimal manipulation
routine 4-16

decdiv() decimal manipulation routine
4-25

dececvt() decimal manipulation routine
4-35

decfcvt() decimal manipulation routine
4-35

Decimal arithmetic
addition 4-25
division 4-25
multiplication 4-25
subtraction 4-25

DECIMAL data type 1-13, 2-4
decadd() 4-25
deccmp() 4-31
deccopy() 4-33
deccvasc() 4-6
deccvint() 4-12
deccvlong() 4-16
decdiv() 4-25
dececvt() 4-35
decfcvt() 4-35
decimal structure shown 4-4
decmul() 4-25
decround() 4-41
decsub() 4-25
dectoasc() 4-9
dectodbl() 4-22
dectoint() 4-14
dectolong() 4-18
dectrunc() 4-43
definition of 4-3
scale and precision 2-9

Declaration
of DATETIME 5-25
of INTERVAL 5-25
Index 3

4 Index
decmul() decimal manipulation routine
4-25

decround() decimal manipulation
routine 4-41

decsub() decimal manipulation routine
4-25

dectoasc() decimal manipulation routine
4-9

dectodbl() decimal manipulation routine
4-22

dectoint() decimal manipulation routine
4-14

dectolong() decimal manipulation
routine 4-18

dectrunc() decimal manipulation routine
4-43

dec_t typedef shown 4-4
define instruction 1-7, 1-8
DELETE statement,dynamic 9-30
Demonstration database

copying Intro-12
example programs 1-28
installation script Intro-11
overview Intro-11

DESCRIBE statement
analyzing returned values 9-7
determining the statement type 9-4
sqlca after executing 7-5
values of SQLCODE after 9-9
with sqlvar_struct 9-17

Dimensions of a host-variable array 1-14
dispcat_pic

before using 6-22
loading cat_picture 6-23
summary 6-22
the program 6-26 to 6-42
using blobload 6-24
using the conditional display logic

6-23
Documentation notes Intro-7
Documentation, other useful Intro-4
Dollar sign ($)

between main variable and indicator
variable 1-18

displaying a literal 2-32
embedding SQL statements in C

routines 1-4
or EXEC SQL keywords 1-4, 1-7
preceding host variables 1-9

with include files 1-6
${ SeeDollar-brace sign

Dollar-brace sign (${)
ANSI standard 1-12
using with block 1-12

DOUBLE PRECISION data type 1-13
dtcurrent() datetime routine 5-30
dtcvasc() datetime routine 5-32
dtextend() datetime routine 5-37
dtime structure shown 5-24
dtime_t typedef shown 5-24
dttoasc() datetime routine 5-40
Dynamic management

constants 1-6
memory management methods 9-5
non-parameterized non-selects 9-4
non-parameterized selects 9-4
parameterized non-selects 9-5
parameterized selects 9-5
use of rtypalign() 9-20

Dynamic management statements, sqlda
structure 9-4

Dynamic SQL See Dynamic Management

E
e compile option 1-21
.ec extension, meaning of 1-20
elif instruction Intro-16, 1-7, 1-9
else instruction 1-7, 1-9
Embedding SQL statements 1-4
endif instruction 1-7, 1-9
Error handling

after a PREPARE Statement 7-12
after an EXECUTE Statement 7-12
checking for no rows 7-6
checking for success 7-5
in line tests 7-8
role of sqlca.h 1-5
with sqlca structure 7-5

Error messages Intro-4
esql

and library functions 3-3
compiler for ESQL/C 1-20
syntax 1-26

EUname compile option 1-22
EXEC SQL keywords

and embedded SQL statements 1-4

and host variables 1-8
and include file 1-7

EXECUTE IMMEDIATE statement,using
9-12

Expressions,formatting 2-31

F
Fetching

DATETIME values 5-26
INTERVAL values 5-26

File extensions
.ec 1-20

File-open-mode flags 6-14
Fixchar host variables 2-10
Flag,warning

See Warnings
FLOAT data type 1-13, 2-4
Formatting numeric expressions

examples 2-32
overview 2-31
valid characters 2-31

Formatting numeric strings 2-31
Formatting routines, numeric 2-31
Function library

bycmpr() 3-5
bycopy() 3-7
byfill() 3-9
byleng() 3-11
ldchar() 3-13
rdownshift() 3-15
rfmtdec() 4-45
rfmtdouble() 2-37
rfmtlong() 2-40
rgetmsg() 7-13
risnull() 2-13
rsetnull() 2-16
rstod() 3-16
rstoi() 3-18
rstol() 3-20
rtypalign() 2-19
rtypmsize() 2-22
rtypname() 2-25
rtypwidth() 2-28
rupshift() 3-22
sqlbreak() 8-4
sqlexit() 8-6
sqlstart() 8-7
stcat() 3-23
stchar() 3-25

stcmpr() 3-27
stcopy() 3-29
stleng() 3-30
using esql 3-3

Function, parameter 1-16

G
g compile option 1-22

H
Header file

sqlca.h 1-5
sqlda.h 1-5
sqlstype.h 1-6
sqltypes.h 1-6
syntax for including 1-6

Host variable
and standard C typedef expressions

1-15
C function calls for DATETIME 5-28
C function calls for INTERVAL 5-28
DATETIME data type 5-25
declared as C variable 1-10
declared with C initializer

expressions 1-11
definition of 1-9
discrepancy with database variable

2-6
fetching DATETIME value 5-26
fetching INTERVAL value 5-26
in non-parameterized SELECT 9-13
in parameterized SELECT 9-21
of type DATETIME 5-25
of type INTERVAL 5-25
preceded by EXEC SQL 1-10
preceded by $ 1-9, 1-10
preceded by : 1-9
scope rules 1-11
setting to NULL value 1-15
storing DATETIME value 5-27
storing INTERVAL value 5-27
structure of DATETIME value 5-24
structure of INTERVAL value 5-24
testing for NULL value 1-15
Index 5

6 Index
Host variables 3-32
hyphen, double(--) 1-5

I
icheck flag 1-22

compiling programs with 1-22
errors returned 1-18

ifdef instruction 1-7, 1-9
ifndef instruction 1-7, 1-9
Include files 5-24

automatic inclusion 1-6
datetime.h 5-28
decimal.h 4-4
preprocessor statement for 1-7
sqltypes.h 9-7, 9-8
syntax for 1-6
to check success of ESQL/C

statements 1-6
incvasc() datetime routine 5-44
INDICATOR keyword

and indicator variable 1-18
Indicator variable

and associated host variable 1-17
and INDICATOR keyword 1-18
checking for missing indicator 1-23
definition of 1-17
how to specify in SQL statement 1-18
main variable 1-17
specification of 1-18
truncation of 1-18
with NULL and NOT NULL values

1-18
INSERT statement,dynamic 9-30
INSERTstatement, dynamic 9-5
INTEGER data type 1-13, 2-4
INTERVAL

data conversion when fetching 5-26
data conversion when storing 5-27
declaration of host variable 5-25
dynamically allocating structures for

9-20
fetching values 5-26
storing values 5-27

INTERVAL data type 1-13, 2-4
data conversion when fetching 5-26
data conversion when storing 5-27
declaration 5-25
definition of 5-24
fetching values 5-26

host variables of 5-25
storing values 5-27

intoasc() datetime routine 5-48
intrvl structure shown 5-24
intrvl_t typedef shown 5-24

L
ldchar() library function 3-13
LENGTH field,with character or varchar

data 9-25
Libraries

C iii
using with esql 1-27

Library functions
bycmpr() 3-5
bycopy() 3-7
byfill() 3-9
byleng() 3-11
ldchar() 3-13
rdownshift() 3-15
rfmtdec() 4-45
rfmtdouble() 2-37
rfmtlong() 2-40
rgetmsg() 7-13
risnull() 2-13
rsetnull() 2-16
rstod() 3-16
rstoi() 3-18
rstol() 3-20
rtypalign() 2-19
rtypmsize() 2-22
rtypname() 2-25
rtypwidth() 2-28
rupshift() 3-22
sqlbreak() 8-4
sqlexit() 8-6
sqlstart() 8-7
stcat() 3-23
stchar() 3-25
stcmpr() 3-27
stcopy() 3-29
stleng() 3-30

local compile option Intro-15, 1-22
Locating a blob

in a named file 6-14
in an open file 6-10
in memory 6-6
reading into a named file 6-15
reading into an open file 6-11

reading into memory 6-7
with close function 6-18
with open function 6-17
with program functions 6-17
with read function 6-18
with write function 6-19
writing from a named file 6-16
writing from an open file 6-12
writing from memory 6-9

Locator structure
defined in 6-4
description of 6-3

locator.h 6-4
See also Locator structure

LOC_DESCRIPTOR flag 6-19
description of 6-19
using with blobs on WORM optical

disk 6-19
log compile option Intro-15, 1-22

M
Machine notes Intro-8
macros

with datetime and interval data types
5-28

with varchars 3-3
MONEY data type 1-13, 2-4

N
New features Intro-14
nln compile option 1-22
Non-parameterized non-select

statements 9-4
Non-parameterized SELECT statements

9-13
Non-parameterized selects 9-4
Null value

in host variables 1-15
inserting into table using indicator

value 1-19
returned in indicator 1-18
risnull with 1-15
rsetnull with 1-15

NUMERIC data type 1-13
Numeric expressions

example formats 2-32
formatting 2-31

rfmtdec() routine 4-45
rfmtdouble() routine 2-37
rfmtlong() routine 2-40
valid characters 2-31

Numeric formatting routines 2-31

O
o compile option 1-22
On-line files Intro-7

P
Parameter keyword 1-16
Parameterized non-SELECT statements

9-12, 9-30
Parameterized non-select statements 9-5
Parameterized SELECT statements 9-21
Parameterized selects 9-5
Parameter, function 1-16
Pointer,declaring as host variable 1-16
Preprocessor

defining and undefining 1-24
EXEC SQL include statement 1-7
role in ESQL/C 1-3
search sequence for included files 1-8
stage 1 1-7
stage 2 1-7
$else statement 1-9
$endif statement 1-9
$ifdef statement 1-9
$ifndef statement 1-9
$include statement 1-7, 1-9
$undef statement 1-8

Program
compiling 1-20
including header files 1-5
preprocessing 1-20
preprocessor statement to include

files 1-7
Index 7

8 Index
R
rdatestr() date manipulation routine 5-5
rdayofweek() date manipulation routine

5-7
rdefmtdate() date manipulation routine

5-9
rdownshift() library function 3-15
REAL data type 1-13
Release notes Intro-7
rfmtdate() date manipulation routine

5-12
rfmtdec() numeric formatting routine

4-45
rfmtdouble() numeric formatting routine

2-37
rfmtlong() numeric formatting routine

2-40
rgetmsg() library function 7-13
risnull() library function 2-13
rjulmdy() date manipulation routine 5-15
rleapyear() date manipulation routine

5-17
rmdyjul() date manipulation routine 5-19
Routine

decadd() 4-25
deccmp() 4-31
deccopy() 4-33
deccvasc() 4-6
deccvdbl() 4-20
deccvint() 4-12
deccvlong() 4-16
decdiv() 4-25
dececvt() 4-35
decfcvt() 4-35
decmul() 4-25
decround() 4-41
decsub() 4-25
dectoasc() 4-9
dectodbl() 4-22
dectoint() 4-14
dectolong() 4-18
dectrunc() 4-43
dtcurrent() 5-30
dtcvasc() 5-32
dtextend() 5-37
dttoasc() 5-40
incvasc() 5-44
intoasc() 5-48

rdatestr() 5-5
rdayofweek() 5-7
rdefmtdate() 5-9
rfmtdate() 5-12
rfmtdec() 4-45
rfmtdouble() 2-37
rfmtlong() 2-40
rjulmdy() 5-15
rleapyear() 5-17
rmdyjul() 5-19
rstrdate() 5-21
rtoday() 5-23

rsetnull() library function 2-16
rstod() library function 3-16
rstoi() library function 3-18
rstol() library function 3-20
rstrdate() date manipulation routine 5-21
rtoday() date manipulation routine 5-23
rtypalign()

use with dynamic memory allocation
9-20

rtypalign() library function 2-19
rtypmsize() library function 2-22
rtypname() library function 2-25
rtypwidth() library function 2-28
rupshift() library function 3-22

S
Scope of

cursor names 1-26
statement ids 1-26
variables 1-11

SELECT statement
non-parameterized 9-13
parameterized 9-21

SERIAL data type 1-13, 2-4
SMALLFLOAT data type 1-13
SMALLINT data type 1-13, 2-4
SQL

and EXEC SQL keywords 1-4
dynamic statements and sqlda 9-4
embedding statements in C programs

1-4
sqlbreak() library function 8-4
sqlca structure

after DESCRIBE executes 7-5
and error handling 7-5

and truncation 1-18
definition of 7-5
how to use 7-3
See also Error handling

sqlcaw_s structure 7-10
sqlcode field 7-5
SQLCODE variable

after a DESCRIBE statement 9-4
definintion and use 7-7

sqlda structure
definition of 9-6
dynamic SQL statements 9-4
values for sqltype field 9-8

sqlexit() library function 8-6
sqlstart() library function 8-7
sqlstype.h file

contents and use 9-10
sqltypes.h file

contents 2-5
contents and use 9-7

Statement id
case sensitivity 1-4
scope of 1-26

stcat() library function 3-23
stchar() library function 3-25
stcmpr() library function 3-27
stcopy() library function 3-29
stleng() Library function 3-30
stores database

copying Intro-12
creating on INFORMIX-OnLine

Intro-12
creating on INFORMIX-SE Intro-12
overview Intro-11

Storing DATETIME values 5-27
Storing INTERVAL values 5-27
String host variables 2-10
Strings, formatting numeric 2-31
struct

decimal shown 4-4
dtime shown 5-24
intrvl shown 5-24
sqlvar shown 9-7

Structures
declared as host objects 1-14
dynamic SQL statements and sqlda

9-4
error handling and sqlca 7-5

nesting 1-14
sqlda defined 9-6
using sqlda 9-29

System descriptor area
definition 9-5
description 9-5

T
TEXT data type 1-13, 2-4, 6-3
Trailing blanks 3-33
TYPE field

after a DESCRIBE 9-14
setting for input 9-31
setting for input values 9-25
values for 9-7

typedef
as host variable 1-15
dec_t shown 4-4
dtime_t shown 5-24
intrvl_t shown 5-24

Typographical conventions Intro-5

U
undef instruction 1-7, 1-8
Union

in a typedef-host variable 1-15
UPDATE statement,dynamic 9-30

V
V compile option 1-22
Values

fetching DATETIME 5-26
fetching INTERVAL 5-26
storing DATETIME 5-27
storing INTERVAL 5-27

VARCHAR conversion 2-11
VARCHAR data type 1-13, 2-4, 3-3

as host variable in ESQL/C 3-32
macros 3-33
role of varchar.h 1-6

Variable
conversion of data types 2-6
database versus host 2-6
host 1-9
indicator 1-17
rules for DECIMAL type 2-8
Index 9

10 Index
W
Warnings

checking for 7-10
DBANSIWARN 1-23
redirecting 1-24
with WHENEVER statement 7-11

WHENEVER statement
reducing error checking code 7-9
using 7-9

X
xopen compile option Intro-15, 1-22, 1-25

values for the TYPE field when using
9-8

X/Open
support of dynamic SQL Intro-14
warnings on extensions 1-25
xopen compile option 1-22

	Preface
	IBM Informix Online Documentation
	Table of Contents
	Introduction
	INFORMIX-ESQL/C and Other Informix Products
	Other Useful Documentation
	How to Use This Manual
	Typographical Conventions
	Command-Line Conventions

	Useful On-Line Files
	ASCII and PostScript Error Message Files
	Using the ASCII Error Message File
	The finderr Script
	The rofferr Script

	Using the PostScript Error Message Files

	The Demonstration Database
	Creating the Demonstration Database on INFORMIX-OnLine
	Creating the Demonstration Database on INFORMIX-SE

	Compliance with Industry Standards
	New Features in INFORMIX-ESQL/C, Version 5.0
	Dynamic SQL in X/Open Mode
	New Routines
	New Compile Options
	New Compile Options for Backward Compatibility
	Other New Features

	New Features in Informix Server Products, Version 5.0

	Programming with INFORMIX- ESQL/C
	Chapter Overview
	What Is INFORMIX-ESQL/C?
	Embedding SQL Statements in C Routines
	Case Sensitivity in ESQL/C Files
	Inserting Comments

	Header Files
	ESQL/C Preprocessor Support
	Include Files
	The $define and $undef Statements
	The ifdef, ifndef, else, elif, and endif Statements

	Using Host Variables in SQL Statements
	Declaring Host Variables
	Initializing Host Variables

	Scope of Host Variables
	Defining a Block

	Types of Host Variables
	Arrays of Host Variables
	Structures as Host Variables
	typedef Expressions as Host Variables
	Null Values in Host Variables
	Character Pointers as Host Variables
	Host Variables as Function Parameters

	Indicator Variables
	Declaring Indicator Variables
	Values Returned in Indicator Variables
	Using Indicator Variables

	Compiling INFORMIX-ESQL/C Programs
	Syntax of the esql Command
	Preprocessing Without Compiling or Linking
	Using the Preprocessing Options
	Checking for Informix Extensions to ANSI-Standard Syntax
	Checking for Missing Indicator Variables
	Numbering Lines
	Redirecting Errors and Warnings
	Defining and Undefining Values While Preprocessing
	Using X/Open Codes and the -xopen Option
	Setting the Scope of Cursor Names and Statement Ids
	Case Sensitivity in Cursor Names and Statement Ids

	Preprocessing, Compiling, and Linking with the esql Command
	Syntax of the Compiling and Linking Options to the esql Command
	Passing Other Arguments to the cc Compiler
	Passing Other C Source and Object Files to the cc Compiler
	Using Other Libraries

	A Sample INFORMIX-ESQL/C Program
	Guide to demo1.ec

	INFORMIX�ESQL/�C Data Types
	Chapter Overview
	Choosing Data Types for Host Variables
	Defined Integers for Data Types
	Character Data Type Choices

	Data Conversion
	When Conversion Occurs
	What Happens in a Conversion
	Numbers to Strings
	Numbers to Numbers
	Operations on Numeric Values
	Data Conversion When Fetching Rows
	Converting Between DATETIME and DATE Data Types
	Converting Between VARCHAR and Character Data Types

	Data Type Function Descriptions
	RISNULL
	RSETNULL
	RTYPALIGN
	RTYPMSIZE
	RTYPNAME
	RTYPWIDTH

	Numeric-Formatting Routines
	Formatting Numeric Strings
	Example Format String
	Example Format String
	Example Format String
	Example Format String
	RFMTDOUBLE
	RFMTLONG

	Working with Character and String Data Types
	Chapter Overview
	Character and String Functions
	BYCMPR
	BYCOPY
	BYFILL
	BYLENG
	LDCHAR
	RDOWNSHIFT
	RSTOD
	RSTOI
	RSTOL
	RUPSHIFT
	STCAT
	STCHAR
	STCMPR
	STCOPY
	STLENG

	Programming with a VARCHAR Data Type
	Declaring a Host Variable for a VARCHAR Data Type
	VARCHAR Macros

	Working with the DECIMAL Data Type
	Chapter Overview
	The DECIMAL Data Type
	Decimal Type Functions
	DECCVASC
	DECTOASC
	DECCVINT
	DECTOINT
	DECCVLONG
	DECTOLONG
	DECCVDBL
	DECTODBL
	DECADD, DECSUB, DECMUL, and DECDIV
	DECCMP
	DECCOPY
	DECECVT and DECFCVT
	DECROUND
	DECTRUNC
	RFMTDEC

	Working with Time Data Types
	Chapter Overview
	The DATE Data Type
	DATE Functions
	RDATESTR
	RDAYOFWEEK
	RDEFMTDATE
	RFMTDATE
	RJULMDY
	RLEAPYEAR
	RMDYJUL
	RSTRDATE
	RTODAY

	DATETIME and INTERVAL Data Types
	DATETIME and INTERVAL Columns
	Declaring DATETIME and INTERVAL Host Variables
	Fetching DATETIME and INTERVAL Values
	Fetching DATETIME Values
	Fetching INTERVAL Values
	Implicit Data Conversion When Fetching

	Storing DATETIME and INTERVAL Values
	Implicit Data Conversion When Storing DATETIME and INTERVAL Values

	Converting Between DATETIME and DATE Data Types
	DATETIME and INTERVAL Data Type Functions
	DTCURRENT
	DTCVASC
	DTCVFMTASC
	DTEXTEND
	DTTOASC
	DTTOFMTASC
	INCVASC
	INCVFMTASC
	INTOASC
	INTOFMTASC

	Working with Binary Large Objects
	Chapter Overview
	Programming with Blobs
	Fields Common to All Data Locations
	Locating Blobs in Memory
	Reading a Blob into Memory
	Writing a Blob from Memory
	Locating Blobs in Open Files
	Reading a Blob into an Open File
	Writing a Blob from an Open File

	Locating Blobs in Named Files
	Reading a Blob into a Named File
	Writing a Blob from a Named File

	User-Programmed Location
	User-Programmed Open Function
	User-Programmed Close Function
	User-Programmed Read Function
	User-Programmed Write Function

	LOC_DESCRIPTOR

	Guide to dispcat_pic
	Before Using dispcat_pic
	Using the Conditional Display Logic
	Loading the cat_picture Column
	Using blobload
	The dispcat_pic Program

	Error Handling
	Chapter Overview
	The Role of the sqlca Structure

	General Error Handling
	Error Status < 0
	Error Status = 0
	Error Status > 0 and < 100
	Error Status = SQLNOTFOUND or 100
	Error Status = 100 After a FETCH Statement
	Error Status = 100 After Other Statements

	Using the SQLCODE Variable
	Checking for an Error Using In-Line Code
	Automatically Checking for Errors with the WHENEVER Statement
	Checking for Warnings
	Errors After a PREPARE Statement
	Errors After an EXECUTE Statement
	RGETMSG

	A Program That Uses Full Error Checking

	Working with the Database Server
	Chapter Overview
	Database Server Control Functions
	SQLBREAK
	SQLDETACH
	SQLEXIT
	SQLSTART

	Dynamic Management in INFORMIX- ESQL/C
	Chapter Overview
	Dynamic SQL Statements and Management Techniques
	Types of Dynamic Management Situations
	The System Descriptor Area
	The sqlda Structure
	Constants in sqltypes.h
	Defined Constants for Use with Dynamic Statements

	Constants and sqlstype.h

	Non-SELECT Statements That Do Not Receive Values at Run Time
	Using EXECUTE IMMEDIATE

	SELECT Statements in Which Select-List Values Are Determined at Run Time
	Using Descriptors
	Example of a SELECT Statement Using Descriptors

	Using an sqlda Structure
	Example of a SELECT Statement Using the sqlda Structure

	SELECT Statements That Receive WHERE-Clause Values at Run Time
	Using Host Variables
	Example of Using Host Variables in a Program

	Using a System Descriptor Area
	Example of Using a System Descriptor Area

	Using an sqlda Structure

	Non-SELECT Statements That Receive Values at Run Time
	Using Host Variables
	Using a System Descriptor Area
	Example of Using SET DESCRIPTOR with a Locator Structure

	Using an sqlda Structure

	List of INFORMIX- ESQL/C Routines
	List of Routines

	Notices

